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Clustering
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The task: partition a set of objects into “meaningful” subsets 
(clusters). The objects in a subset should be “similar”.

Notations:

Set of Clusters

Set of indices

Feature vectors

Partitioning                                                 

for            ,  



Clustering
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Let                  and each cluster has a “representative”

The task reads:

Alternative variant is to consider the clustering      as
a mapping                      that assigns a cluster number to each 



K-Means Algorithm
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Initialize centers randomly,

Repeat until convergence:

1. Classify:

2. Update centers:

• The task is NP
• converges to a local optimum (depends on the initialization)



Sequential K-Means
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Repeat infinitely:

1. Chose randomly a feature vector    from the training data

2. Classify it:

3. Update the   -th center:

with a decreasing step

• converges to the same, as the parallel version
• is a special case of Robbins-Monro Algorithm



Some variants
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Other distances, e.g.                   instead of

In the K-Means algorithm the classification step remains the same,
the update step – the geometric median of   

(a bit complicated as the average ).

Another problem: features may be not additive (     does not exist)

Solution: K-Medioid Algorithm (      is a feature vector from the 
training set)



A generalization
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Observe (for the Euclidean distance):

In what follows:

with a Distance Matrix    that can be defined in very different ways.

Example: Objects are nodes of a weighted graph,            is the length 
of the shortest path from    to   .

Distances for “other” objects (non-vectors):
• Edit (Levenshtein) distance between two symbolic sequences
• For graphs – distances based on graph isomorphism etc.



An application – color reduction
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Objects are pixels, features are RGB-values.
Partition the RGB-space into “characteristic” colors.

(8 colors)



Another application – superpixel segmentation

Object are pixels.  Features are RGBXY-values.

→ Those pixels belong to the same cluster that are close to each 
other both spatially and in in the RGB-space

SLIC Superpixels: http://ivrg.epfl.ch/research/superpixels
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Cohonen Networks, Self-Organizing Maps
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The task is to “approximate” a dataset by a neural network of a 
certain topology.

An example – stereo in “flatland”.

The input space is 3- (or more) dimensional, the set of points is 
however isomorphic to a 2D-space (up to noises).



Self-Organizing Maps
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SOM-s (usually) consist of RBF-neurons    , each one represents 
(covers) a “part” of the input space (specified by the centers       ).

The network topology is given by means of a distance              .
Example – neurons are nodes of a weighted graph, distances are 
shortest paths. For the “flatland” example the graph is a 2D-grid 
with unit weight for all edges.



Self-Organizing Maps, sequential algorithm
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1. Chose randomly a feature vector    from the training data (white)
2. Compute the “winner”-neuron (dark-yellow)

3. Compute the neighborhood of       in the network (yellow)

4. Update the weights of all neurons from 



Self-Organizing Maps, algorithms
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is monotonously decreasing with respect to     (time) and

Without 3) – the sequential K-Means.

Parallel variants:
Go through all feature vectors, sum up the gradients, apply.

Example for                : 

The network fits into the data distribution (unfolds).



K-Means ↔ Expectation Maximization

EM – compute posteriors for the Expectation step

K-Means – classify object
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Conclusion
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Before:
1. Probability theory – models, inference, learning
2. → Discriminative learning → Classifiers

Neural networks:
1. Feed-Forward Networks – complex classifiers
2. Hopfield Networks – structured output
3. Cohonen Networks – clustering (unsupervised), model fitting

Next topics – further classifiers:
1. Support Vector Machines, Kernels
2. Empirical Risk minimization
3. Principal Component Analysis
4. Combining classifiers – Decision Trees, AdaBoost


