Machine Learning

Support Vector Machines
Linear Classifiers (recap)

A building block for almost all – a mapping $f : \mathbb{R}^n \to \{+1, -1\}$, a partitioning of the input space into half-spaces that correspond to classes.

Decision rule:
\[y = f(x) = \text{sgn}(\langle x, w \rangle - b) \]

w is the **normal** to the hyper plane \(\langle x, w \rangle = b \) (Synonyms – Neuron model, Perceptron etc.)
Two learning tasks

Let a training dataset $X = \{(x_i, y_i) \ldots\}$ be given with

(i) data $x_i \in \mathbb{R}^n$ and (ii) classes $y_i \in \{-1, +1\}$

The goal is to find a hyper plane that separates the data (correctly)

$$y_i \cdot [\langle w, x_i \rangle + b] \geq 0 \quad \forall i$$

Now: The goal is to find a “corridor” (stripe) of the maximal width that separates the data (correctly).
Remember that the solution is defined only up to a common scale
→ Use **canonical** (with respect to the learning data) form in order to avoid ambiguity:

\[
\min_{i} |\langle w, x_i \rangle + b| = 1
\]

The margin:

\[
\langle w, x' \rangle + b = +1, \quad \langle w, x'' \rangle + b = -1
\]

\[
\langle w, x' - x'' \rangle = 2
\]

\[
\langle w/\|w\|, x' - x'' \rangle = 2/\|w\|
\]

The optimization problem:

\[
\|w\|^2 \rightarrow \min_{w,b}
\]

\[
s.t. \quad y_i \cdot [\langle w, x_i \rangle + b] \geq 1 \quad \forall i
\]
Linear SVM

The Lagrangian of the problem:

\[
L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_i \alpha_i \cdot (y_i \cdot [\langle w, x_i \rangle + b] - 1) \rightarrow \max \min_{\alpha, w, b} \\
\alpha_i \geq 0 \quad \forall i
\]

The meaning of the dual variables \(\alpha\):

a) \(y_i \cdot [\langle w, x_i \rangle + b] - 1 < 0\) (a constraint is broken) \(\rightarrow\) maximization wrt. \(\alpha_i\) gives: \(\alpha_i \rightarrow \infty\), \(L(w, b, \alpha) \rightarrow \infty\) (surely not a minimum)

b) \(y_i \cdot [\langle w, x_i \rangle + b] - 1 > 0\) \(\rightarrow\) maximization wrt. \(\alpha_i\) gives \(\alpha_i = 0\) \(\rightarrow\) no influence on the Lagrangian

c) \(y_i \cdot [\langle w, x_i \rangle + b] - 1 = 0\) \(\rightarrow\) \(\alpha_i\) does not matter, the vector \(x_i\) is located “on the wall of the corridor” – **Support Vector**
Linear SVM

Lagrangian:

\[L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_i \alpha_i \cdot (y_i \cdot [\langle w, x_i \rangle + b] - 1) \]

Derivatives:

\[
\frac{\partial L}{\partial b} = \sum_i \alpha_i y_i = 0
\]

\[
\frac{\partial L}{\partial w} = w - \sum_i \alpha_i y_i x_i = 0
\]

\[
w = \sum_i \alpha_i y_i x_i
\]

The solution is a **linear combination** of the data points.
Substitute \(w = \sum_i \alpha_i y_i x_i \) into the decision rule and obtain

\[
\begin{align*}
 f(x) &= \text{sgn}(\langle x, w \rangle + b) = \text{sgn} \left(\langle x, \sum_i \alpha_i y_i x_i \rangle + b \right) = \\
 &\text{sgn} \left(\sum_i \alpha_i y_i \langle x, x_i \rangle + b \right)
\end{align*}
\]

→ the vector \(w \) is not needed explicitly !!!

The decision rule can be expressed as a linear combination of **scalar products** with support vectors.

Only strictly positive \(\alpha_i \) (i.e. those corresponding to the support vectors) are necessary for that.
Linear SVM

Substitute

\[\sum_i \alpha_i y_i = 0 \]

\[w = \sum_i \alpha_i y_i x_i \]

into the Lagrangian

\[L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_i \alpha_i \cdot (y_i \cdot [\langle w, x_i \rangle + b] - 1) \]

and obtain the **dual task**

\[\sum_i \alpha_i - \frac{1}{2} \sum_{ij} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \rightarrow \max_{\alpha} \]

s.t. \(\alpha_i \geq 0, \sum_i \alpha_i y_i = 0 \)

→ can also be expressed in terms of scalar products only, the data points \(x_i \) are not explicitly necessary.
Feature spaces

1. The input space \mathcal{X} is mapped onto a feature space \mathcal{H} by a non-linear transformation $\Phi : \mathcal{X} \to \mathcal{H}$
2. The data are separated (classified) by a linear decision rule in the feature space

Example: quadratic classifier

$$f(x) = \text{sgn}(a \cdot x_1^2 + b \cdot x_1 x_2 + c \cdot x_2^2)$$

The transformation is

$$\Phi : \mathbb{R}^2 \to \mathbb{R}^3$$

$$\Phi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

(the images $\Phi(x)$ are separable in the feature space)
The images $\Phi(x)$ are not explicitly necessary in order to find the separating plane in the feature space, but their **scalar products**

$$\langle \Phi(x), \Phi(x') \rangle$$

For the example above:

$$\langle \Phi(x_1, x_2), \Phi(x'_1, x'_2) \rangle = \langle (x_1^2, \sqrt{2}x_1x_2, x_2^2), (x'_1^2, \sqrt{2}x'_1x'_2, x'_2^2) \rangle =$$

$$x_1^2x'_1^2 + 2x_1x_2x'_1x'_2 + x_2^2x'_2^2 =$$

$$(x_1x'_1 + x_2x'_2)^2 = \langle x, x' \rangle^2 = k(x, x')$$

→ the scalar product can be computed in the input space, it is not necessary to map the data points onto the feature space explicitly.

Such functions $k(x, x')$ are called **Kernels**.
Kernels

Kernel is a function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ that computes scalar product in a feature space

$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle$$

Neither the corresponding space \mathcal{H} nor the mapping $\Phi : \mathcal{X} \rightarrow \mathcal{H}$ need to be specified thereby explicitly → “Black Box”.

Alternative definition: if a function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel, then there exists such a mapping $\Phi : \mathcal{X} \rightarrow \mathcal{H}$, that ... The corresponding feature space \mathcal{H} is called the **Hilbert space induced** by the kernel k.

Let a function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be given. Is it a kernel? → Mercer’s theorem.
Let k_1 and k_2 be two kernels.

Then αk_1, $k_1 + k_2$, $k_1 k_2$ are kernels as well (there are also other possibilities to build kernels from kernels).

Popular Kernels:

- **Polynomial:** $k(x, x') = \left(\langle x, x' \rangle + c \right)^d$

- **Sigmoid:** $k(x, x') = \tanh(\kappa \langle x, x' \rangle + \Theta)$

- **Gaussian:** $k(x, x') = \exp\left(-\frac{||x - x'||^2}{(2\sigma^2)}\right)$ (interesting: $\mathcal{H} = \mathbb{R}\infty$)
The decision rule with a Gaussian kernel

\[k(x, x') = \exp \left[-\frac{||x - x'||^2}{2\sigma^2} \right] \]

\[f(x) = \text{sgn} \left(f'(x) \right) = \text{sgn} \left(\sum_i y_i \alpha_i \exp \left[-\frac{||x - x_i||^2}{2\sigma^2} \right] \right) \]
Conclusion

• SVM is a representative of **discriminative learning** – i.e. with all corresponding advantages (power) and drawbacks (overfitting) – remember e.g. the Gaussian kernel with $\mathcal{H} = \mathbb{R}^\infty$

• The building block – linear classifiers. All formalisms can be expressed in terms of **scalar products** – the data are not needed explicitly.

• **Feature spaces** – make non-linear decision rules in the input spaces possible.

• **Kernels** – scalar product in feature spaces, the latter need not be necessarily defined explicitly.

Literature (names):

• Bernhard Schölkopf, Alex Smola ...
• Nello Cristianini, John Shawe-Taylor ...