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Abstract. We describe a scheme for solving Energy Minimization problems,
which is based on the A∗ algorithm accomplished with appropriately chosen
LP-relaxations as heuristic functions. The proposed scheme is quite general and
therefore can not be applied directly for real computer vision tasks. It is rather a
framework, which allows to study some properties of Energy Minimization tasks
and related LP-relaxations. However, it is possible to simplify it in such a way,
that it can be used as a stop criterion for LP based iterative algorithms. Its main
advantage is that it is exact – i.e. it never produces a discrete solution that is not
globally optimal. In practice it is often able to find the optimal discrete solution
even if the used LP-solver does not reach the global optimum of the correspond-
ing LP-relaxation. Consequently, for many Energy Minimization problems it is
not necessary to solve the corresponding LP-relaxations exactly.

1 Introduction

This work is motivated mainly by the following observations.
At the time there are many algorithms for approximate solutions of Energy Mini-

mization problems, based on LP-relaxation techniques [9,7,6,10,8,5]. However,
strongly polynomial algorithms for resulting LP problems are still unknown. There-
fore, in practice it is necessary to use approximations, i.e. the results of an iterative
procedure, which are reached after finite time. Even if it would be possible to solve
LP-relaxations exactly, it is not known in general, whether there is a gap between the
optimal relaxed solution and optimal discrete solution of the initial Energy Minimiza-
tion task. Even if it is known that there is no gap, it is in general not clear, how to obtain
the optimal discrete solution, given the optimal relaxed one. To answer the latter two
questions it is necessary to solve a Constraint Satisfaction Problem that is NP-complete
by itself. Despite of these theoretical drawbacks, the LP-relaxation methods became
extremely popular, because in practice it is almost always possible to extract good re-
sults from (possibly suboptimal) continuous solutions in an heuristic but reasonable
way. Unfortunately, much less papers study relationships between different relaxations
of underlying discrete optimization problems as well as relationships between discrete
problems and corresponding relaxations. Summarizing, there are many open questions
in the scope of LP-relaxation techniques, if they are applied to Energy Minimization
problems. Especially the question of strongly polynomial solvability of LP-relaxation is
in a certain sense not natural, because this question relates solely to linear programming
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techniques – i.e. it has in principle nothing in common with the initial discrete
optimization problem.

On the other hand there are much less algorithms for Energy Minimization, which
have a “discrete nature”. A classical example is Dynamic Programming [1]. This algo-
rithm does not relate to any continuous optimization. It just performs a predefined num-
ber of operations and gives the solution. Unfortunately, this approach is not suitable for
many computer vision problems, because it is applicable only for simple graphs. An-
other group of algorithms can be characterized as an iterative search – they consider a
subset of labelings in each iteration. The simplest method of such kind is Iterated Condi-
tional Modes [2], more elaborated techniques are e.g. α-expansion, α/β-swap [3] and
their derivatives. It is noteworthy that these algorithms use MinCut based techniques
(which are again indirectly based on LP-relaxations) in order to perform an elemen-
tary search step. Unfortunately, here it is often difficult to state, for which tasks these
approaches give global optimal solution, what is the precision for general Energy Min-
imization tasks etc. Summarizing, the branch of research, which is formed by discrete
optimization techniques, seems to be neglected (at least in the scope of computer vision
problems).

We propose to consider Energy Minimization problems primarily as discrete opti-
mization problems and to apply general search techniques to them. In particular, we
describe in this paper a scheme, based on the A∗ algorithm [4]. Appropriately chosen
LP-relaxations are used thereby as heuristic functions. This idea by itself is not new
for discrete optimization in general. However, to our knowledge, it was not considered
before taking into account special properties of Energy Minimization problems, which
result from typical computer vision tasks (like e.g. segmentation, stereo-reconstruction
etc.). The main specific here is that it is not possible as a rule to solve the corresponding
LP-relaxations exactly due to a very large number of variables and constraints.

The proposed scheme is quite general and therefore can not be applied directly for
real computer vision tasks. It is rather a framework, which allows to study some prop-
erties of Energy Minimization tasks and related LP-relaxations. However, it is possible
to simplify it in such a way, that it can be used as a stop criterion for LP based iterative
algorithms (such as Message Passing, the Subgradient method etc.). Its main advantage
is that it is exact – i.e. it gives the globally optimal discrete solution for some tasks. For
other problems it never stops (e.g. if there is an essential gap between the values of the
best discrete solution and the global optimum of the corresponding LP-relaxation). In
other words, it never produces a solution that is not optimal. The other important prop-
erty is that it is often able to find the optimal discrete solution even if the used LP-solver
does not reach the global optimum of the corresponding LP-relaxation. To conclude, for
many Energy Minimization problems it is not necessary to solve the corresponding LP-
relaxations exactly in order to get the globally optimal discrete solution.

2 Notations and Definitions

Problem statement. For simplicity we consider Energy Minimization tasks (MinSum
problems) of second order. Let G = (R, E) be a graph (also called the problem graph)
with the node set R, a particular node is referred as r ∈ R, the edge set is E = {{r, r′}}.
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Let K be a finite label set and f : R → K be a labeling, i.e. f(r) denotes a label k ∈ K
chosen by the labeling f in a node r ∈ R. Let qr : K → R and grr′ : K × K → R

be quality functions, which assign real values to the labels in each node and to the label
pairs in each edge respectively. The quality of a labeling is the sum

Q(f) =
∑

r∈R

qr

(
f(r)

)
+

∑

{rr′}∈E

grr′
(
f(r), f(r′)

)
, (1)

the task is to find

(arg)min
f

Q(f) =

= (arg)min
f

⎡

⎣
∑

r∈R

qr

(
f(r)

)
+

∑

{rr′}∈E

grr′
(
f(r), f(r′)

)
⎤

⎦ . (2)

In addition we will need the following notations. Let us denote by G′ = (R′, E′) the
subgraph induced by a node subset R′ ⊂ R, i.e. E′ = {{r, r′} | {r, r′} ∈ E, r, r′ ∈
R′}. A partial labeling fi : R′ → K is a restriction of f into the subset R′. The index
will always depend on the context, determining in each particular case, what subset R′

is meant, which labeling on it is considered etc. For a partial labeling fi : R′ → K and
a node r ∈ R′ we will say, that the partial labeling covers this node. The quality Q(fi)
of a partial labeling is the same as (1) but summed over the corresponding subgraph G′

instead of the whole problem graph G. A subtask A(fi) induced by a partial labeling
fi is a MinSum problem, that is built from the original one (2) by fixation of the labels
in those nodes, which are covered by fi, that is

(arg)min
fj

⎡

⎢⎢⎢⎣Q(fj) +
∑

{rr′}∈E
r∈R′,r′∈R/R′

grr′
(
fi(r), fj(r′)

)

⎤

⎥⎥⎥⎦ , (3)

where fj : R/R′ → K are partial labelings, which cover the complement R/R′

(thereby we omit the constant part Q(fi)).

LP-relaxation. A common approach to cope with energy minimization tasks (2) is
based on LP-relaxation technique. The first step is to introduce integer weights λ(·) ∈
{0, 1} for each pair (r, k) as well as for each triple ({rr′}, k, k′) and to rewrite (2) in
the form1

∑

r

∑

k

qr(k)λr(k) +
∑

rr′

∑

kk′
grr′(k, k′)λrr′(k, k′) → min

λ

s.t.∑

k

λr(k) = 1 ∀r

∑

k′
λrr′(k, k′) = λr(k) ∀r, r′, k

λr(k), λrr′(k, k′) ∈ {0, 1}. (4)

1 Sometimes we omit brackets and “∈” relations for readability.
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Then the last condition is relaxed, i.e. substituted by λ(·) ∈ [0, 1], which gives a task of
linear programming.

We prefer to consider the task (4) using the notation of equivalent transformations.
They are defined as a superpositions of following operations:

q̂r(k) = qr(k) + δ, ĝrr′(k, k′) = grr′(k, k′) − δ ∀k′ (5)

with an arbitrary finite constant δ. The new functions q̂r and ĝrr′ represent an equivalent
task. The application of an equivalent transformation is also called reparametrization of
a task. The dual of (4) can be formulated using these notations as follows:

∑

r

min
k

q̂r(k) +
∑

rr′
min
kk′

ĝrr′(k, k′) → max
q̂,ĝ

, (6)

where the functions q̂ and ĝ can be obtained by equivalent transformations from the
original functions q and g. For a subtask A(fi), we denote by LP (fi) the solution (the
value) of its LP-relaxation (6).

General search algorithms, A∗

· · ·

· · · r = 3

r = 2

Whole problem

· · · Complete labelings

· · ·

r = 1

· · · · · ·· · ·

Fig. 1. Search tree

General search algorithms are described very extensive in the literature. Therefore
we omit here formal definitions and just consider, how a MinSum task can be formu-
lated as a general search problem. The main idea is to decompose the whole task into
subtasks followed by recursive decompositions of these. Let the nodes of our MinSum
problem be enumerated. We may decompose the whole problem by fixation of labels
e.g. in the first node r = 1. In that way we obtain |K| subproblems, each one having
one node less than the initial task. Doing such decomposition recursively a search tree
is built, which is presented in Fig. 1. Each layer (a particular depth value) corresponds
to a node r of the problem graph. Each tree node in a layer r corresponds to a partial
labeling fi : R′ → K with R′ = {1, 2 . . . r}. According to this the subtree with the root
fi represents the subtask A(fi). The root of the tree represents the whole problem, the
leaves correspond to complete labelings. The quality of a node fi is the quality Q(fi)
of the corresponding partial labeling. The task is to find a leaf of minimal quality.
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We will also need the following notation. A partial labeling fj is called successor of
another partial labeling fi iff

fi : R′ → K, fj : R′ ∪ {r /∈ R′} → K, fj(r) = fi(r) ∀r ∈ R′. (7)

We will say that the partial labeling fj is obtained from fi by fixation of a label in a
node r /∈ R′. The set of all successors for a partial labeling fi, which can be obtained in
such a way, is denoted by succr(fi). At the same time it denotes the set of all children
of a tree node fi in the search tree.

queue before

queue after · · ·
· · · · · ·

· · ·

best scored node

Q(fi)

h(fi)

Put the root into the queue
Repeat {

Take the best scored node from the queue
if it is a leaf

return it as the solution
compute all successors
score them according to Q(fi) + h(fi)
put them into the queue

}

Fig. 2. A∗ algorithm

A common approach for general search problems is to use heuristic search tech-
niques to evaluate the search tree in order to reach a leaf of minimal quality. In partic-
ular we will use the A∗ algorithm. Its functionality is illustrated in Fig. 2. In each step
there is a subset of tree nodes (called queue), which are not evaluated so far. At the very
beginning it consists only of root of the tree. Each node in the queue is scored accord-
ing to the evaluation function, which is the sum of the node quality and an heuristic
function (denoted by h(fi)). The latter is an estimator for the difference between the
quality of the node and the best leaf in the corresponding subtree. In each step the al-
gorithm takes the node with the best score from the queue. If it is a leaf, the algorithm
finishes and returns this node as the solution. Otherwise, the node is expanded, i.e. all
successors (children of this node in the search tree) are computed. They are scored as
described above and put into the queue.

The properties of A∗ are determined primarily by the type of the used heuri-
stic function. An heuristic function is called admissible (optimistic), if it never
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overestimates the real difference between the qualities of the node and the best leaf in
the corresponding subtree:

h(fi) ≤ argmin
f∈subtree(fi)

Q(f) − Q(fi) = h∗(fi). (8)

An heuristic is called monotone if

Q(fi) + h(fi) ≤ Q(fj) + h(fj) fj ∈ succ(fi) (9)

holds, i.e. the heuristic is the more precisely (and therefore the less optimistic) the closer
to the leaves. The A∗ algorithm is exact (always finds a global solution) if the heuristic
function is admissible2.

For the complexity analysis of A∗ it is usually assumed that the complexity of com-
putation for Q(fi) and h(fi) is a constant. Let n be the maximal number of tree nodes
in the queue during the search. The time complexity of A∗ is then O(n log n). Alter-
natively, the number of expansions can be considered, which are necessary to solve the
problem. In this case it is assumed that the time complexity of one expansion step (one
loop iteration in Fig. 2) is a constant. In both variants the crucial question is, how the
considered numbers (n or the number of expansions) depend on the problem size, for
example on the number of nodes |R| in the problem graph. To be precise, we will use
the notation “time complexity” having in mind the number of expansions depending on
the problem graph size.

The time complexity of the A∗ algorithm is exponential in general. However, if the
heuristic function is admissible and monotone, then a complexity analysis is possible,
that takes into account the precision of the heuristic function. In particular, A∗ has linear
time complexity, if the heuristic function is exact (denoted by h∗(fi) in (8)). It means
that the A∗ algorithm behaves like the depth-first search, i.e. a tree node of maximal
depth is always chosen for expansion. In this case the maximal number of nodes in the
queue is O(|R||K|) and exactly |R| expansions should be performed in order to reach
an optimal leaf.

3 General Scheme

The main idea of our approach is to use LP-relaxation LP (fi) as the heuristic function
h(fi) for the A∗ search. First of all, is should be stated that this is an admissible heuris-
tic, since the LP-relaxation of a discrete optimization task represents a lower bound
for its solution. Therefore A∗ is exact. Secondly, it can be easily seen that this heuris-
tic is also monotone. The key point to show this is to note that for each pair fi and
fj ∈ succr(fi)

Q(fj) + LP (fj) = Q(fi) + LP ′(fi) ≥ Q(fi) + LP (fi) (10)

holds, where LP ′(fi) is the same as LP (fi) but with additional constraints for λ (see
(4)), which fix the label k = fj(r) in the node r – i.e. both LP-relaxations have the

2 In general, the heuristic must be both admissible and monotone to guarantee optimality. In our
case it is enough that it is admissible only, because the set of leaves is finite.
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same objective function but in LP ′(fi) the set of feasible solutions is a proper subset
of those in LP (fi).

We call a discrete task LP-solvable, if there is no gap between the values of its solu-
tion and its LP-relaxation. We call a task strictly LP-solvable, if the same holds for all
partial labelings, which may be needed during the evaluation of the search tree3. It is
obvious that in the latter case A∗ has linear time complexity, since the heuristic function
becomes exact. It is also clear that non strict LP-solvability does not guarantee linear
complexity in general.

On the other hand, it is easy to see that strict LP-solvability is only a sufficient con-
dition for linear complexity, but not a necessary one. Even if there is a gap (the task
is not LP-solvable), A∗ may have linear complexity, if this gap is relatively small –
i.e. if it is not big enough to prefer partial labelings of non maximal depth during the
search. A weaker sufficient condition can be formulated from A∗ itself as follows. The
A∗ algorithm has linear time complexity if there exist a sequence of partial labelings
f1, f2 . . . f , fi : {1 . . . i} → K , fi+1 ∈ succi+1(fi), so that

Q(fi) + LP (fi) < Q(fl) + LP (fl) ∀fl ∈ succ(fj)/fj+1, j < i (11)

holds for each fi in the sequence. But even this is not a necessary condition. If the above
inequality is satisfied non strictly, A∗ may behave as depth-first search as well, because
it may find the “right” sequence of partial labelings by chance.

4 A∗ Based Stop Criterion for LP-Solvers

Let us remember that it is not possible to solve the needed LP-relaxations exactly and
efficiently for real tasks. Known LP-solvers are iterative algorithms, that only approach
the global optimum. Consequently, the optimal solution is guaranteed only in infinite
time. Therefore we are constrained to use approximations, i.e. the results of these algo-
rithms after a finite time. Let us denote these approximations by L̃P (fi). In this case
we can not guarantee the monotonicity of the heuristic anymore. However, it remains
admissible, if methods based on maximization of the dual energy are used (in this case
L̃P (fi) ≤ LP (fi) holds, since these methods try to maximize the lower bound for op-
timal energy). Therefore A∗ remains exact. It makes in principle possible to use these
methods with A∗ to search for optimal discrete solution.

Let us consider again the behavior of A∗ but from a slightly other point of view,
taking into account that we use approximations L̃P (fi) instead of the exact values
LP (fi). Assume a task for which A∗ does not behave like depth-first search, i.e. at some
stage it chooses for expansion a tree node fi, that has non maximal depth – the condition
(11) is not satisfied. Obviously, it can not happen, if the task is strictly LP-solvable and
LP-relaxations are computed exactly. Consequently, there are only two possible reasons
for such a behavior: either the task is not strictly LP-solvable or the approximations
L̃P (fi) are too far from the corresponding LP (fi). Suppose, it is known that the task
is strictly LP-solvable. Then only the second possibility remains – i.e. for some fi used
during the search the corresponding approximation L̃P (fi) was computed too coarsely.

3 For example submodular tasks have this property.
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There are basically two ways to proceed further in this situation. The first one is to
allow the search to deviate from the depth-first like behavior, i.e. proceed A∗ further us-
ing current (coarse) approximations L̃P (fi). In this case however, the search procedure
often starts to massively expand tree nodes of non maximal depth (note that the heuris-
tics h(f) for leaves are zero, i.e. exact per definition). In short, we can not forecast the
further behavior of A∗ – i.e. it often turns into a complete search.

The second way is to attempt to improve the current approximations L̃P (fi) in order
to preserve the depth-first like behavior of the search. Unfortunately, this idea can not
be used directly, because we can detect the necessity to improve these approximations
only after the search was already performed (the approximations L̃P (fi) were already
computed). Nevertheless, we would like to discuss this idea in a little bit more detail.
Let us imagine, that we have a hypothetical algorithm at our disposition, which has the
following properties. First, it is an iterative procedure that maximizes the lower bound
of the energy – i.e. it is something like a usual LP-solver (e.g. Diffusion or Message
Passing etc.). Second, besides of the lower bound, it provides some kind of information,
that allows to easily compute approximations L̃P (fi) for all partial labelings which may
be needed during the A∗ search – i.e. without to solve the LP-relaxations for each partial
labeling separately. Furthermore, let us assume, that the algorithm improves during its
work this additional information in a similar way as it improves the lower bound for the
energy. In other words, the additional information allows to compute L̃P (fi) the more
precisely, the more time is spent. Then we could use the idea to detect the necessity
of an improvement for L̃P (fi) as follows. We run this hypothetical procedure and let
it compute all information, that may be needed for estimation of L̃P (fi) during the
search. Once a while we call the A∗ search and check, whether it behaves like the depth-
first search. If yes, then we have found the optimal discrete solution. Otherwise we let
this hypothetical procedure work further to improve the lower bound as well as the
additional information. Summarizing, the depth-first like behavior of the A∗ algorithm
can serve as a stop criterion for LP-solvers, which have the above mentioned properties.

Unfortunately, we have no such hypothetical LP-solver at our disposition. However,
it is possible to to adapt existing algorithms in order to compute the necessary additional
information approximately. Let us consider again the task of the maximization of the
dual energy (6). In particular, let q̂ and ĝ be quality functions obtained by an iterative
LP-solver from the original q and g at some stage of its work. Note, that we can omit
without loss of generality the node terms q̂r, because they can be always set to zero by
an equivalent transformation (5) with δ = −q̂r(k). Secondly, for a particular instance
of ĝ in (6) we can always subtract a constant from each ĝrr′ . In doing so we change
both the initial discrete task (qualities of all labelings) and the value of (6) by the same
number. When subtracting the minimal value from each ĝrr′ the following holds. The
current value of the LP-relaxation (the current lower bound) is zero. All functions ĝrr′

are nonnegative, all functions q̂r are zero, the value of the best labeling is therefore
nonnegative as well. After such a normalization the numbers

marg(r, k) =
∑

r′:{rr′}∈E

min
k′

ĝrr′(k, k′) (12)
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can serve as an approximation for min-marginals for a node r and a label k. The current
value of the heuristic h(fi) for a partial labeling fi : R′ → K can be approximated by

h(fi) =
∑

{rr′}∈E
r∈R′,r′∈R/R′

min
k

ĝrr′
(
fi(r), k

)
, (13)

i.e. it is the same as min-marginals (12) but accumulated only over those edges, which
connect nodes from the fixed part R′ with nodes from its complement. It is easy to
see that this heuristic does not represent the needed LP-relaxations for all partial label-
ings. However, the values computed by (13) are guaranteed not greater and therefore
represent an admissible heuristic. Moreover, it can be easily seen that this heuristic is
monotone as well.

f∗ is the current best partial labeling,
set it empty (no labels are fixed)

next_best is the value of the evaluation function for the
best tree node not expanded so far, despite of f∗,
set next_best = ∞

For each node r {
compute the set of successors S = {fi, fi ∈ succr(f

∗)}
and their evaluation functions e(fi) = Q(fi) + h(fi);
extend f∗ to the best successor: f∗ = arg min

fi∈S
e(fi);

if e(f∗) > next_best
return “solution not found”

choose f ′ as the next best successor: f ′ = arg min
fi∈S,fi �=f∗

e(fi);

if e(f ′) < next_best
next_best = e(f ′)

}
return f∗ as the best solution

Fig. 3. A∗ based stop criterion

Summarized, the A∗ based stop criterion is presented in Fig. 3. Note, that it is not
necessary to store all partial labelings in the queue in order to detect the depth-first
like behavior. Only the value of the evaluation function for the best “second pretender”
is needed (denoted by next_best in Fig. 3). It reduces the time complexity of the A∗

search from O(n log n) (as in the general case) to O(n), where n is the number of
partial labelings needed during the search, i.e. the maximal number of nodes in the
search tree. If the values mink′ ĝrr′(k, k′) are precomputed in advance4 for each r < r′

and k, the computation of (13) for a node r can be done in a time, that is proportional to

4 In fact, the solvers compute these numbers in order to perform equivalent transformations.
Therefore, they should be only stored for further use by the stop criterion.
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the number of edges, which are incident to r. Summarizing, the overall time complexity
of the criterion is O(|E||K|).

We would like to stress that this stop criterion does not indicate the exact solution of
the corresponding LP-relaxation. It detects only the possibility “to extract” the global
optimal discrete solution from the current state of a continuous optimization procedure.
In the case the solution was found, it is not known in general, whether the task is strictly
LP-solvable or not, whether there is a gap (the task is not LP-solvable), whether the
used LP-solver reached the global optimum of the LP-relaxation. But in this case it
is not necessary to answer these questions, because the discrete solution was already
found. Summarizing, this approach gets rid (to some extent) of the necessity to look for
algorithms for exact solution of LP-relaxation.

The interpretation of the non depth-first like behavior of A∗ depends on the addi-
tional knowledge about the task and/or the used LP-solver. If it is known that the task is
strictly LP-solvable, then the non depth-first like behavior indicates that the LP-solver
has not reached the optimum so far or the coarsening (13) is too pure. If it is known
that the solver is already in optimum, then the task is not strictly LP-solvable or the
coarsening (13) is too pure again and so on.

In most practical cases we do not have such additional knowledge. It is then obvi-
ously possible that the whole loop (LP-solver with the A∗ based stop criterion) never
stops. If it is nevertheless necessary to find the exact solution of the initial discrete prob-
lem, it is necessary to perform the A∗ search in a more general form – i.e. to allow it to
have non depth-first like behavior.

5 Experiments

First of all, it is necessary to justify, what we would like to demonstrate by the exper-
iments. The main goal is to show that the A∗ based stop criterion gives (as a rule) the
exact global discrete solution in the situation that the used LP-solver does not reach the
global optimum of the corresponding LP-relaxation. It can be done e.g. by comparison
of the qualities for the found discrete solution and the lower bound, found by the used
LP-solver – in our case the latter is zero since the task is normalized as described above.
The second goal is to examine, whether our stop criterion allows to reduce the time com-
plexity of the used LP-solver compared with a “simple” stop criterion, which does not
relate to the best discrete solution, but only detects the optimum of the LP-relaxation
– i.e. whether it allows to stop LP-solver essentially earlier. We use the following pro-
cedure as such simple stop criterion. First, the approximations for min-marginals (12)
are computed. A “seemingly good” labeling is produced by fixation of labels with best
min-marginals in each node. If the quality of the labeling produced in such a way is
zero, then this labeling is optimal and the algorithm reached the global optimum of the
LP-relaxation for the whole task5.

In our experiments we used the Diffusion algorithm [9,10] and the Subgradient
method [7] for maximization of (6). In short, they both are iterative ones, that apply
equivalent transformations (each one in its own manner) in order to maximize (6).

5 Obviously, this is a sufficient but not necessary condition for the global optimum.



94 D. Schlesinger

First, we tested the approach for problems, generated as follows. The problem graph
corresponds to a grid with 4-connected neighborhood structure (128 × 128 for Dif-
fusion and 64 × 64 for the Subgradient method). The values of the functions qr are
generated uniformly in interval [0, 1]. The functions grr′ are chosen as Potts model,
i.e. grr′(k, k′) = α · 1I(k 	=k′). One experiment is organized in the following way.
For a given task we call the LP-solver. After each iteration (some portion of work) we
check the A∗ based stop criterion. If a predefined number of iterations is done and the
stop criterion does not produce the solution, we cancel the experiment and state that
the solver does not converge for this task. If the criterion was successful (the optimal
discrete solution was found), we note the number of iterations made so far. After that
we let the solver work further until the simple stop criterion is satisfied. In doing so
we note the number of iterations, which was necessary for the solver to converge after
the best labeling was found by the A∗ based stop criterion. Then we compute ratio of
these two numbers of iterations. For certain combinations of the Potts parameter α and
the number of labels |K| we performed 10 experiments per combination and average
the computed ratio over the successful experiments (i.e. solver converges). These ratios
are summarized in Fig. 4. The values given after slash are the numbers of successful
experiments for each combination. Empty cells indicate combinations of |K| and α, for
which the solvers never converged (either the problems with these combinations have
as a rule an essential gap or the solvers were not able to narrow the global optimum of
the LP-relaxation good enough in acceptable time).

In addition we would like to note the following. In the majority of the experiments
(92.2% for Diffusion and 97.9% for the Subgradient method) the value of the best label-
ing found by our stop criterion was greater then zero. It confirms our main hypothesis
– the criterion finds as a rule the optimal discrete labeling in the situation, that the used
LP-solver does not reach the global optimum of the corresponding LP-relaxation. In
such cases some additional iterations (together with the normalization) were necessary

|K| \ α 0.3 0.4 0.5 0.6 0.7 0.8
2 .16/10 .04/10 .01/10 .06/10 .89/10 .94/10
3 .02/8 .03/10 .85/10 .71/10
4 .09/9 .20/9 .46/10
5 .07/8 .16/10 .34/10

(a) Diffusion (ratios are multiplied by 100)

|K| \ α 0.3 0.4 0.5 0.6 0.7 0.8
2 .42/10 .46/10 .21/10 .07/10 .10/10 .05/10
3 .07/1 .75/6 .16/9 .04/10 .03/9 .03/10
4 .49/3 .36/9 .07/9 .18/10 .03/10
5 .44/1 .27/5 .05/9 .02/10 .02/9

(b) Subgradient method

Fig. 4. Average ratios for generated problems
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(a) Input image (b) Diffusion (bad) (c) Diffusion (middle) (d) Diffusion (good)

(e) Ground truth (f) Solution (bad) (g) Solution (middle) (h) Solution (good)

Fig. 5. Results for an artificial image

for simple stop criterion to find the optimal discrete solution of zero quality. There were
also situation (6 times for Diffusion and 18 times for Subgradient), that the LP-solver
did not converge in acceptable time after the best labeling was already found by the A∗

based stop criterion. The typical situation for Diffusion was, that the value of the dual
energy did not change at all for a very long time6. For the Subgradient method it was
always the case that the dual energy changed, but so slowly that we were not able to
wait. Sometimes the dual energy even decreased after the solution was found7. Compar-
ing Diffusion and Subgradient, we observed that the A∗ stop criterion has much more
essential impact for Subgradient (sometimes more as 75% additional iterations were
necessary) as for Diffusion (about a fraction of a percent).

The next experiment was made for an artificial image shown in Fig. 5. The input
image in Fig. 5(a) was produced from the ground truth (Fig. 5(e)) by generation a gray-
value in each pixel independently according to segment specific probability distribu-
tions. The resulting MinSum problem was a Potts model with negated logarithms of
corresponding probability values for qr. We performed experiments with Diffusion as
the LP-solver for a “sequence” of models, starting from one with “bad” functions qr

(the corresponding probability distributions are almost the same and uniform for both

6 Note, that Diffusion does not converge in general to the global optimum of the LP-relaxation.
7 The Subgradient method converges to the global optimum of the LP-relaxation but not

monotonously.
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(a) Input image (b) Solution (bad) (c) Solution (good)

Fig. 6. Results for a real image

segments – Fig. 5(b,f)) and finishing with “good” one (the corresponding probability
distributions are the true ones – Fig. 5(d,h)). Figures 5(f,g,h) show the solutions, found
by the A∗ based stop criterion in each stage. The figures 5(b,c,d) show the results pro-
duced by the simple stop criterion (labels with the best approximation of min-marginals
(12) were chosen in each pixel independently) just after the exact solution is found by
A∗. Those edges for which the chosen state pair has non zero quality are marked white.
A more or less significant effect was observed mainly for bad models – the segmenta-
tions produced by the simple stop criterion and by A∗ differ essentially and a relatively
big number of additional iterations was necessary for Diffusion to find optimal segmen-
tation. This impact decreases as the model becomes better – in Fig. 5(d) there are almost
no edges with non zero qualities.

Finally, we tested our approach on real images. One example is presented in Fig. 6.
The experiment was organized in the same manner, as for the previous one. Mixtures
of multivariate Gaussians were chosen as the probability distributions of colors for seg-
ments. This example just demonstrates that the A∗ based stop criterion is able to work
with real images as well.

6 Conclusion

In this work we discussed, how general search techniques can be applied for Energy
Minimization problems. We presented a scheme, which is based on the A∗ algorithm
accomplished with appropriate chosen LP-relaxations as heuristic functions. Based on
it we derived a stop criterion for iterative LP-solvers, which is often able to find the
global optimal discrete solution even if the used LP-solver does not reach the global
optimum of the corresponding LP-relaxation. Summarizing, for many Energy Mini-
mization problems it is not necessary to solve the corresponding LP-relaxations exactly.

This work is a first trial at most. Consequently, there are many open questions. Here
we would like to mention only some of them. Obviously, the general search scheme
can be built in different ways. In this paper we used a simple enumeration of nodes –
i.e. the search tree is fixed in advance. Of course, other variants are possible as well. A
related topic is that our construction does not take into account the structure of the prob-
lem graph. Especially for computer vision tasks it would be profitable to account for it,
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because here graphs are often very sparse. In the paper we considered an “hypothetical
LP-solver” that has certain properties, which allow to use it with the A∗ based stop
criterion. As we do not really have such a solver, it was necessary to coarsen the needed
estimations. Even with this coarsening the algorithm performs well. However, a real
LP-solver with the necessary properties would obviously further improve it.
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