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Context

Self-optimizing distributed hardware/software systems
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Motivation

Example: Audio-Processing (https://auphonic.com/)
• Customers send audio files for grafting

• Noise reduction
• Sound design (e.g., adding synthesized sounds)
• Synchronization of multiple audio streams
• Etc.
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Problems

• Problem #1: Formulation of optimization problem

• Developers reinvent solutions to almost equal problems
 NFPs of interest change
 Resources of interest change

• But, the general optimization problem remains the same
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Optimization Problem Description
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Problems

• Problem #1: Formulation of optimization problem

• Developers reinvent solutions to almost equal problems
 NFPs of interest change
 Resources of interest change

• But, the general optimization problem remains the same

• Solution: 
 Model-driven development of the system
 Use runtime and design-time models of the system to

generate the optimization problem
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Problems

• Problem #2: Complex dependencies between NFPs have to be considered

• Optimization problem relies on these dependencies
(e.g., trade-off between response time and noise level)

• Solution:
 QoS contracts covering the non-functional behavior of

implementations
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Problems

• Problem #3: High computational complexity of optimization

• Can optimization be performed in budget?

• Solution:
 Scalability analysis of the approach
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Cool Component Model
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Quality Contract Language

1 contract VLC implements VideoPlayer.play {

2

3   mode fluent {

4     requires component Decoder {

5       min dataRate: 9 MB/s
6     }

7     requires resource Net {

8       min bandwidth: 10 MB/s

9     }

10 

11     provides min frameRate: 25 FPS

12   }

13   mode lowQuality {

14     /* More requirements and provisions here ... */

15  }

16 }
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Contract Negotiation by ILP/PBO
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Contract Negotiation by PBO

• Pseudo-Boolean Optimization (PBO) = 0-1 Integer Linear Programming (ILP)

• i.e., only boolean decision variables

• Allows for application of SAT-solving (e.g., DPLL)

• Could be faster than general ILP solving
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Scalability Analysis

• Performed on typical class of systems: pipe-and-filter style

• Each component type has 2 implementations
• 2 NFPs per implementation

• Measurements taken for C x S systems from C = [2..100] and S = [2..100]

C components

S servers
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Scalability Analysis: ILP

Generation Time Solving Time
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Scalability Analysis: PBO
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Summary

• Problem #1: Developer‘s reinvent solutions to optimization problems
• Application of runtime models to generate the optimization problem

• Problem #2: Complex dependencies between NFPs have to be considered
• Application of QoS contracts covering non-functional behavior of

implementations

• Problem #3: High computational complexity of optimization techniques
• Scalability Analysis

 ILP solving is predictable up to 25 component types
 ILP solving is feasible up to 100 component types, 

if typical processing time is »30s 

 ILP performs much better than PBO

 PBO solving is feasible up to 20 component types
 PBO solving is predictable up to 10 component types
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Thank You!

Contact

http://www.inf.tu-dresden.de/~sebgoetz

sebastian.goetz@acm.org
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