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Context

Self-optimizing distributed hardware/software systems
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Motivation

Example: Audio-Processing (https://auphonic.com/)
• Customers send audio files for grafting

• Noise reduction
• Sound design (e.g., adding synthesized sounds)
• Synchronization of multiple audio streams
• Etc.
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Problems

• Problem #1: Formulation of optimization problem

• Developers reinvent solutions to almost equal problems
 NFPs of interest change
 Resources of interest change

• But, the general optimization problem remains the same
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Optimization Problem Description
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Problems

• Problem #1: Formulation of optimization problem

• Developers reinvent solutions to almost equal problems
 NFPs of interest change
 Resources of interest change

• But, the general optimization problem remains the same

• Solution: 
 Model-driven development of the system
 Use runtime and design-time models of the system to

generate the optimization problem
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Problems

• Problem #2: Complex dependencies between NFPs have to be considered

• Optimization problem relies on these dependencies
(e.g., trade-off between response time and noise level)

• Solution:
 QoS contracts covering the non-functional behavior of

implementations
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Problems

• Problem #3: High computational complexity of optimization

• Can optimization be performed in budget?

• Solution:
 Scalability analysis of the approach
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Cool Component Model
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Quality Contract Language

1 contract VLC implements VideoPlayer.play {

2

3   mode fluent {

4     requires component Decoder {

5       min dataRate: 9 MB/s
6     }

7     requires resource Net {

8       min bandwidth: 10 MB/s

9     }

10 

11     provides min frameRate: 25 FPS

12   }

13   mode lowQuality {

14     /* More requirements and provisions here ... */

15  }

16 }
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Contract Negotiation by ILP/PBO
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Contract Negotiation by PBO

• Pseudo-Boolean Optimization (PBO) = 0-1 Integer Linear Programming (ILP)

• i.e., only boolean decision variables

• Allows for application of SAT-solving (e.g., DPLL)

• Could be faster than general ILP solving
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Scalability Analysis

• Performed on typical class of systems: pipe-and-filter style

• Each component type has 2 implementations
• 2 NFPs per implementation

• Measurements taken for C x S systems from C = [2..100] and S = [2..100]

C components

S servers
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Scalability Analysis: ILP

Generation Time Solving Time
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Scalability Analysis: PBO

Generation Time Solving Time
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Summary

• Problem #1: Developer‘s reinvent solutions to optimization problems
• Application of runtime models to generate the optimization problem

• Problem #2: Complex dependencies between NFPs have to be considered
• Application of QoS contracts covering non-functional behavior of

implementations

• Problem #3: High computational complexity of optimization techniques
• Scalability Analysis

 ILP solving is predictable up to 25 component types
 ILP solving is feasible up to 100 component types, 

if typical processing time is »30s 

 ILP performs much better than PBO

 PBO solving is feasible up to 20 component types
 PBO solving is predictable up to 10 component types
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Thank You!

Contact

http://www.inf.tu-dresden.de/~sebgoetz

sebastian.goetz@acm.org
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