
ADAPTIVE‘13, Valencia, Spain, 28.05.2013

Sebastian Götz, Claas Wilke, Sebastian Richly, Christian
Piechnick, Georg Püschel and Uwe Aßmann

Model-driven Self-Optimization
by Integer Linear Programming and Pseudo-
Boolean Optimization

Context

Self-optimizing distributed hardware/software systems

Collect

Analyze

Decide

Act

QoS Demands
Objectives

Software
Component 1

Software
Component 2

Software
Component 3

Impl Impl Impl

Internet

UMTS/LTE

W-LAN LAN

Slide 2

Motivation

Example: Audio-Processing (https://auphonic.com/)
• Customers send audio files for grafting

• Noise reduction
• Sound design (e.g., adding synthesized sounds)
• Synchronization of multiple audio streams
• Etc.

params

audio file

Noise
Reduction

Generate
Sound
Effects

Generate
Atmos

Synchronization
Noise

Reduction

Noise
Reduction

Generate
Sound
Effects

Generate
Sound
Effects

Generate
Atmos

Generate
Atmos

Synchronization

Slide 3

Problems

• Problem #1: Formulation of optimization problem

• Developers reinvent solutions to almost equal problems
 NFPs of interest change
 Resources of interest change

• But, the general optimization problem remains the same

Slide 4

Optimization Problem Description

Noise
Reduction

Generate
Sound
Effects

Generate
Atmos

Synchronization

? ? ?

? ? ?
? ? ?

? ?

Server #1 Server #2 Server #3 …
CPU

RAM

Net

CPU

RAM

Net

CPU

RAM

Net

?

Slide 5

Problems

• Problem #1: Formulation of optimization problem

• Developers reinvent solutions to almost equal problems
 NFPs of interest change
 Resources of interest change

• But, the general optimization problem remains the same

• Solution:
 Model-driven development of the system
 Use runtime and design-time models of the system to

generate the optimization problem

Slide 6

Problems

• Problem #2: Complex dependencies between NFPs have to be considered

• Optimization problem relies on these dependencies
(e.g., trade-off between response time and noise level)

• Solution:
 QoS contracts covering the non-functional behavior of

implementations

Slide 7

Problems

• Problem #3: High computational complexity of optimization

• Can optimization be performed in budget?

• Solution:
 Scalability analysis of the approach

Slide 8

System Runtime

THEATRE

Multi-Quality Auto-Tuning

Contract Negotiation
by ILP

Contract Negotiation
by PBO

System Development

Cool Component
Model (CCM)

Quality Contract
Language (QCL)

qBench

Slide 9

Cool Component Model

Cool
Component

Model

Structure Models
(i.e., types)

Variant Models
(i.e., instances)
 runtime

<<instance of>>

Quality
Contract

Language

<<refined by>>

Behavior Models

<<enrich>>

Expressions Units DataTypes

Requests Reconfigurations Workloads

Slide 10

Quality Contract Language

1 contract VLC implements VideoPlayer.play {

2

3 mode fluent {

4 requires component Decoder {

5 min dataRate: 9 MB/s
6 }

7 requires resource Net {

8 min bandwidth: 10 MB/s

9 }

10

11 provides min frameRate: 25 FPS

12 }

13 mode lowQuality {

14 /* More requirements and provisions here ... */

15 }

16 }

Slide 11

Contract Negotiation by ILP/PBO

Decision Variables

Select ImplMap to HW

NFP Provisions

NFP Requirements

K
napsack

Resource Provisions

Resource Requirements

fixed
Knapsack

Architectural
Constraints

Objective Function

ILP/PBO

Constraints

30.01.2013

CCM Variant Model
Runtime Description of
Hard- & Software
Infrastructure

CCM Structure Model
Architecture of
Hard- & Software
System

QCL Contracts
Characterizing Non-functional Behavior of
Implementations

CCM Behavior Models

Slide 12

Contract Negotiation by PBO

• Pseudo-Boolean Optimization (PBO) = 0-1 Integer Linear Programming (ILP)

• i.e., only boolean decision variables

• Allows for application of SAT-solving (e.g., DPLL)

• Could be faster than general ILP solving

Slide 13

Scalability Analysis

• Performed on typical class of systems: pipe-and-filter style

• Each component type has 2 implementations
• 2 NFPs per implementation

• Measurements taken for C x S systems from C = [2..100] and S = [2..100]

C components

S servers

Slide 14

Scalability Analysis: ILP

Generation Time Solving Time

Slide 15

Scalability Analysis: PBO

Generation Time Solving Time

Slide 16

Summary

• Problem #1: Developer‘s reinvent solutions to optimization problems
• Application of runtime models to generate the optimization problem

• Problem #2: Complex dependencies between NFPs have to be considered
• Application of QoS contracts covering non-functional behavior of

implementations

• Problem #3: High computational complexity of optimization techniques
• Scalability Analysis

 ILP solving is predictable up to 25 component types
 ILP solving is feasible up to 100 component types,

if typical processing time is »30s

 ILP performs much better than PBO

 PBO solving is feasible up to 20 component types
 PBO solving is predictable up to 10 component types

Slide 17

Thank You!

Contact

http://www.inf.tu-dresden.de/~sebgoetz

sebastian.goetz@acm.org

	Model-driven Self-Optimization
	Context
	Motivation
	Problems
	Optimization Problem Description
	Problems
	Problems
	Problems
	Multi-Quality Auto-Tuning
	Cool Component Model
	Quality Contract Language
	Contract Negotiation by ILP/PBO
	Contract Negotiation by PBO
	Scalability Analysis
	Scalability Analysis: ILP
	Scalability Analysis: PBO
	Summary
	Thank You!

