
ADAPTIVE‘13, Valencia, Spain, 28.05.2013

Sebastian Götz, Claas Wilke, Sebastian Richly, Christian
Piechnick, Georg Püschel and Uwe Aßmann

Model-driven Self-Optimization
by Integer Linear Programming and Pseudo-
Boolean Optimization

Context

Self-optimizing distributed hardware/software systems

Collect

Analyze

Decide

Act

QoS Demands
Objectives

Software
Component 1

Software
Component 2

Software
Component 3

Impl Impl Impl

Internet

UMTS/LTE

W-LAN LAN

Slide 2

Motivation

Example: Audio-Processing (https://auphonic.com/)
• Customers send audio files for grafting

• Noise reduction
• Sound design (e.g., adding synthesized sounds)
• Synchronization of multiple audio streams
• Etc.

params

audio file

Noise
Reduction

Generate
Sound
Effects

Generate
Atmos

Synchronization
Noise

Reduction

Noise
Reduction

Generate
Sound
Effects

Generate
Sound
Effects

Generate
Atmos

Generate
Atmos

Synchronization

Slide 3

Problems

• Problem #1: Formulation of optimization problem

• Developers reinvent solutions to almost equal problems
 NFPs of interest change
 Resources of interest change

• But, the general optimization problem remains the same

Slide 4

Optimization Problem Description

Noise
Reduction

Generate
Sound
Effects

Generate
Atmos

Synchronization

? ? ?

? ? ?
? ? ?

? ?

Server #1 Server #2 Server #3 …
CPU

RAM

Net

CPU

RAM

Net

CPU

RAM

Net

?

Slide 5

Problems

• Problem #1: Formulation of optimization problem

• Developers reinvent solutions to almost equal problems
 NFPs of interest change
 Resources of interest change

• But, the general optimization problem remains the same

• Solution:
 Model-driven development of the system
 Use runtime and design-time models of the system to

generate the optimization problem

Slide 6

Problems

• Problem #2: Complex dependencies between NFPs have to be considered

• Optimization problem relies on these dependencies
(e.g., trade-off between response time and noise level)

• Solution:
 QoS contracts covering the non-functional behavior of

implementations

Slide 7

Problems

• Problem #3: High computational complexity of optimization

• Can optimization be performed in budget?

• Solution:
 Scalability analysis of the approach

Slide 8

System Runtime

THEATRE

Multi-Quality Auto-Tuning

Contract Negotiation
by ILP

Contract Negotiation
by PBO

System Development

Cool Component
Model (CCM)

Quality Contract
Language (QCL)

qBench

Slide 9

Cool Component Model

Cool
Component

Model

Structure Models
(i.e., types)

Variant Models
(i.e., instances)
 runtime

<<instance of>>

Quality
Contract

Language

<<refined by>>

Behavior Models

<<enrich>>

Expressions Units DataTypes

Requests Reconfigurations Workloads

Slide 10

Quality Contract Language

1 contract VLC implements VideoPlayer.play {

2

3 mode fluent {

4 requires component Decoder {

5 min dataRate: 9 MB/s
6 }

7 requires resource Net {

8 min bandwidth: 10 MB/s

9 }

10

11 provides min frameRate: 25 FPS

12 }

13 mode lowQuality {

14 /* More requirements and provisions here ... */

15 }

16 }

Slide 11

Contract Negotiation by ILP/PBO

Decision Variables

Select ImplMap to HW

NFP Provisions

NFP Requirements

K
napsack

Resource Provisions

Resource Requirements

fixed
Knapsack

Architectural
Constraints

Objective Function

ILP/PBO

Constraints

30.01.2013

CCM Variant Model
Runtime Description of
Hard- & Software
Infrastructure

CCM Structure Model
Architecture of
Hard- & Software
System

QCL Contracts
Characterizing Non-functional Behavior of
Implementations

CCM Behavior Models

Slide 12

Contract Negotiation by PBO

• Pseudo-Boolean Optimization (PBO) = 0-1 Integer Linear Programming (ILP)

• i.e., only boolean decision variables

• Allows for application of SAT-solving (e.g., DPLL)

• Could be faster than general ILP solving

Slide 13

Scalability Analysis

• Performed on typical class of systems: pipe-and-filter style

• Each component type has 2 implementations
• 2 NFPs per implementation

• Measurements taken for C x S systems from C = [2..100] and S = [2..100]

C components

S servers

Slide 14

Scalability Analysis: ILP

Generation Time Solving Time

Slide 15

Scalability Analysis: PBO

Generation Time Solving Time

Slide 16

Summary

• Problem #1: Developer‘s reinvent solutions to optimization problems
• Application of runtime models to generate the optimization problem

• Problem #2: Complex dependencies between NFPs have to be considered
• Application of QoS contracts covering non-functional behavior of

implementations

• Problem #3: High computational complexity of optimization techniques
• Scalability Analysis

 ILP solving is predictable up to 25 component types
 ILP solving is feasible up to 100 component types,

if typical processing time is »30s

 ILP performs much better than PBO

 PBO solving is feasible up to 20 component types
 PBO solving is predictable up to 10 component types

Slide 17

Thank You!

Contact

http://www.inf.tu-dresden.de/~sebgoetz

sebastian.goetz@acm.org

	Model-driven Self-Optimization
	Context
	Motivation
	Problems
	Optimization Problem Description
	Problems
	Problems
	Problems
	Multi-Quality Auto-Tuning
	Cool Component Model
	Quality Contract Language
	Contract Negotiation by ILP/PBO
	Contract Negotiation by PBO
	Scalability Analysis
	Scalability Analysis: ILP
	Scalability Analysis: PBO
	Summary
	Thank You!

