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Problem

Context

• Prediction of (component-based) software‘s non-functional properties (NFPs)

• QoS Contracts used to specify non-functional behavior

• Self-Optimization w.r.t. energy consumption (and other NFPs)

• Energy / Multi-Quality Auto-Tuning (EAT / MQuAT)

Problem

• Derivation / Computation of QoS Contracts for EAT/MQuAT

• Concrete values of NFPs depend on

• Utilized hardware

• User request

Goal/Solution

• 3-Phase approach:

1. contract template (hardware- and user-independent), 

2. contract (user-independent),

3. contract instance
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contract HeapSort implements Sort.sort {

/* Quality mode for fast CPUs. */

mode fast {

requires resource CPU {

min frequency: 1 * cpu.frequency.max [GHz];

min time: <f_cpu_time>(size_of_list) [ms];

}    

provides min response_time: 

<f_response_time>(size_of_list) [ms];

}

/* Quality mode for slower CPUs. */

mode slow {

requires resource CPU {

min frequency: 

0.4 * cpu.frequency.max [GHz];

min time: <f_cpu_time>(size_of_list) [ms];

}

provides min response_time: 

<f_response_time>(size_of_list) [ms];

}

}
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contract HeapSort implements Sort.sort {

/* Quality mode for fast CPUs. */

mode fast {

requires resource CPU {

min frequency: 1 * cpu.frequency.max [GHz];

min time: <f_cpu_time>(size_of_list) [ms];

}    

provides min response_time: 

<f_response_time>(size_of_list) [ms];

}

/* Quality mode for slower CPUs. */

mode slow {

requires resource CPU {

min frequency: 

0.4 * cpu.frequency.max [GHz];

min time: <f_cpu_time>(size_of_list) [ms];

}

provides min response_time: 

<f_response_time>(size_of_list) [ms];

}

}

contract HeapSort implements Sort.sort {

/* Quality mode for fast CPUs. */

mode fast {

requires resource CPU {

min frequency: 2.0 [GHz];

min time: 1.147*10^(-6)*size_of_list^2-1922 [ms];

}    

provides min response_time: 

2.152*10^(-6)*size_of_list^2-1917 [ms];

}

/* Quality mode for slower CPUs. */

mode slow {

requires resource CPU {

min frequency: 

0.8 [GHz];

min time: 1.552*10^(-6)*size_of_list^2-1821 [ms];

}

provides min response_time: 

3.552*10^(-6)*size_of_list^2-1901 [ms];

}

}
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//size_of_list = 500.000

contract HeapSort implements Sort.sort {

/* Quality mode for fast CPUs. */

mode fast {

requires resource CPU {

min frequency: 2.0 [GHz];

min time: 47 [ms];

}    

provides min response_time: 

104 [ms];

}

/* Quality mode for slower CPUs. */

mode slow {

requires resource CPU {

min frequency: 

0.8 [GHz];

min time: 140.2 [ms];

}

provides min response_time: 244 [ms];

}

}
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Discussion

1. Are there further dependencies not covered by the presented approach?

2. Does it make sense to directly cover energy consumption in QoS contracts
or is it better to compute the potential consumption based on the derived 
resource utilization?

3. Measureability of NFPs

• Minimum runtime requirement – OS tasks and Hardware’s SMM introduce 
deviations of >20ms. 

• Reproducability – How to determine a sufficient amount of context factors 
to consider for a benchmark setup?
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Thank You!
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