
Department of Computer Science, Software Technology Group

Approximating Quality Contracts for
Energy Auto-Tuning Software

GREENS 2012, Zürich, Switzerland

03.06.2012

Sebastian Götz, Claas Wilke, Sebastian Richly and Uwe Assmann

Problem

Context

• Prediction of (component-based) software‘s non-functional properties (NFPs)

• QoS Contracts used to specify non-functional behavior

• Self-Optimization w.r.t. energy consumption (and other NFPs)

• Energy / Multi-Quality Auto-Tuning (EAT / MQuAT)

Problem

• Derivation / Computation of QoS Contracts for EAT/MQuAT

• Concrete values of NFPs depend on

• Utilized hardware

• User request

Goal/Solution

• 3-Phase approach:

1. contract template (hardware- and user-independent),

2. contract (user-independent),

3. contract instance

03.06.2012 Götz et al. - Approximating Quality Contracts for EAT Software Slide 2

3.
Profiling

Measurement
Results

Contract
4.

Approximation

Phase 2: Deployment Time

Available
Resources

Approach: Quality Contract Creation

Legend

Activity

Information

Code

1. Application
Development

2. Benchmark
Development

Benchmark

Contract
Template

Parameter
Metadata

Phase 1: Design Time

Contract
Instance

5.
Instantiation

Phase 3: Runtime

User
Request

Design Time:
Available Resources

Unknown

Deployment Time:
User Demand

Unknown
Runtime

03.06.2012 Götz et al. - Approximating Quality Contracts for EAT Software Slide 3

3.
Profiling

Measurement
Results

Contract
4.

Approximation

Phase 2: Deployment Time

Available
Resources

Approach: Quality Contract Creation

Legend

Activity

Information

Code

1. Application
Development

2. Benchmark
Development

Benchmark

Contract
Template

Parameter
Metadata

Phase 1: Design Time

Contract
Instance

5.
Instantiation

Phase 3: Runtime

User
Request

Design Time:
Available Resources

Unknown

Deployment Time:
User Demand

Unknown
Runtime

contract HeapSort implements Sort.sort {

/* Quality mode for fast CPUs. */

mode fast {

requires resource CPU {

min frequency: 1 * cpu.frequency.max [GHz];

min time: <f_cpu_time>(size_of_list) [ms];

}

provides min response_time:

<f_response_time>(size_of_list) [ms];

}

/* Quality mode for slower CPUs. */

mode slow {

requires resource CPU {

min frequency:

0.4 * cpu.frequency.max [GHz];

min time: <f_cpu_time>(size_of_list) [ms];

}

provides min response_time:

<f_response_time>(size_of_list) [ms];

}

}

03.06.2012 Götz et al. - Approximating Quality Contracts for EAT Software Slide 4

3.
Profiling

Measurement
Results

Contract
4.

Approximation

Phase 2: Deployment Time

Available
Resources

Approach: Quality Contract Creation

Legend

Activity

Information

Code

1. Application
Development

2. Benchmark
Development

Benchmark

Contract
Template

Parameter
Metadata

Phase 1: Design Time

Contract
Instance

5.
Instantiation

Phase 3: Runtime

User
Request

Design Time:
Available Resources

Unknown

Deployment Time:
User Demand

Unknown
Runtime

contract HeapSort implements Sort.sort {

/* Quality mode for fast CPUs. */

mode fast {

requires resource CPU {

min frequency: 1 * cpu.frequency.max [GHz];

min time: <f_cpu_time>(size_of_list) [ms];

}

provides min response_time:

<f_response_time>(size_of_list) [ms];

}

/* Quality mode for slower CPUs. */

mode slow {

requires resource CPU {

min frequency:

0.4 * cpu.frequency.max [GHz];

min time: <f_cpu_time>(size_of_list) [ms];

}

provides min response_time:

<f_response_time>(size_of_list) [ms];

}

}

contract HeapSort implements Sort.sort {

/* Quality mode for fast CPUs. */

mode fast {

requires resource CPU {

min frequency: 2.0 [GHz];

min time: 1.147*10^(-6)*size_of_list^2-1922 [ms];

}

provides min response_time:

2.152*10^(-6)*size_of_list^2-1917 [ms];

}

/* Quality mode for slower CPUs. */

mode slow {

requires resource CPU {

min frequency:

0.8 [GHz];

min time: 1.552*10^(-6)*size_of_list^2-1821 [ms];

}

provides min response_time:

3.552*10^(-6)*size_of_list^2-1901 [ms];

}

}

03.06.2012 Götz et al. - Approximating Quality Contracts for EAT Software Slide 5

3.
Profiling

Measurement
Results

Contract
4.

Approximation

Phase 2: Deployment Time

Available
Resources

Approach: Quality Contract Creation

Legend

Activity

Information

Code

1. Application
Development

2. Benchmark
Development

Benchmark

Contract
Template

Parameter
Metadata

Phase 1: Design Time

Contract
Instance

5.
Instantiation

Phase 3: Runtime

User
Request

Design Time:
Available Resources

Unknown

Deployment Time:
User Demand

Unknown
Runtime

//size_of_list = 500.000

contract HeapSort implements Sort.sort {

/* Quality mode for fast CPUs. */

mode fast {

requires resource CPU {

min frequency: 2.0 [GHz];

min time: 47 [ms];

}

provides min response_time:

104 [ms];

}

/* Quality mode for slower CPUs. */

mode slow {

requires resource CPU {

min frequency:

0.8 [GHz];

min time: 140.2 [ms];

}

provides min response_time: 244 [ms];

}

}

03.06.2012 Götz et al. - Approximating Quality Contracts for EAT Software Slide 6

Discussion

1. Are there further dependencies not covered by the presented approach?

2. Does it make sense to directly cover energy consumption in QoS contracts
or is it better to compute the potential consumption based on the derived
resource utilization?

3. Measureability of NFPs

• Minimum runtime requirement – OS tasks and Hardware’s SMM introduce
deviations of >20ms.

• Reproducability – How to determine a sufficient amount of context factors
to consider for a benchmark setup?

03.06.2012 Götz et al. - Approximating Quality Contracts for EAT Software Slide 7

Thank You!

03.06.2012

HAEC
CRC 912

Contact

http://www.inf.tu-dresden.de/~sebgoetz

sebastian.goetz@acm.org

Götz et al. - Approximating Quality Contracts for EAT Software Slide 8

