

Faculty of Computer Science, Institute of Software- and Multimedia-Engineering, Software Technology Group

Runtime Variability Management for Energy-Efficient Software by Contract Negotiation

Sebastian Götz, Claas Wilke, Sebastian Cech, Uwe Aßmann

Models@runtime 2011, Wellington, NZ October, 17th 2011

• Target: Run software w.r.t. non-functional requirements in an optimal way.

\rightarrow Energy Auto-Tuning (EAT) [1,2]

• System knows

- 1. Its **hardware** (resources)
- 2. Its **software** (components)
- 3. Their energy behavior

• System adapts

- 1. The **deployment of software** components
- 2. On available hardware
- 3. W.r.t. their **energy consumption**

4. And **non-functional properties**

- S. Götz, C. Wilke, M. Schmidt, S. Cech, and U. Aßmann. Towards energy auto tuning. In Proceedings of First Annual International Conference on Green Information Technology (GREEN IT), pages 122–129. GSTF, 2010.
- [2] S. Götz, C. Wilke, S. Cech, and U. Aßmann. Architecture and Mechanisms of Energy Auto-Tuning. To appear in: Sustainable Green Computing: Practices, Methodologies and Technologies, IGI Global, 2011

Example Application

1	contract VLC implements VideoPlayer {
2	Ouglity (
5 Д	Requires component Decoder {
5	min dataRate: 50 KB/s
6	Software Dependencies
7	
8	requires resource CPU {
9	max cpuLoad: 50 percent
10	min frequency: 2 GHz Resource Dependencies
11	}
12	requires resource Net {
13	min bandwidth: 10 MBit/s
14	}
15	
16	provides min frameRate: 25 FPS QUALITY Provisions
17	provides min imageWidth: 1024 Pixel
18	provides min imageHeight: 768 Pixel
19	}
20	Ouglity Medee
21	mode lowQuality {
22	/* More requirements and provisions here */
23	}
24	

[2] S. Götz, C. Wilke, S. Cech, and U. Aßmann. Architecture and Mechanisms of Energy Auto-Tuning. To appear in: Sustainable Green Computing: Practices, Methodologies and Technologies, IGI Global, 2011

24.10.2011

Solution at a Glance

- HW/SW Modeling using components and contracts
- Application of Contract Negotiation to compute the optimal system configuration at runtime.

Definition: "System Configuration"

A selection of components and their mapping onto resources.

• Transformation into an MILP

Definition: MILP (Mixed Integer Linear Program)

Constraint System with **objective function** comprised of **linear constraints**, where some **variables** have to be **integers** (must not be reals).

- MILP consists of
 - Variables
 - Constraints
 - Objective Function

- Four kinds of variables:
 - 1. Base load
 (e.g., baseload#Server1)
 - 2. Resource usage (e.g., usage#Server1#RAM_[s1]#size)
 - **3. Implementation Mapping (Boolean variables, flags)** (e.g., b#FreeDecoder#fast#Server2)

4. NFPs (e.g., bitrate, throughput,

(e.g., bitrate, throughput, framerate, ...)

• Objective Function:

$$\min \left(\frac{\sum (\text{weight}_{XYZ} \cdot \text{usage# container}_X \# \text{resource}_Y \# \text{property}_Z)}{+\sum baseload \# server_i} \right)$$

• Selection criteria/mappings → Boolean variables

- + b#FileReader#file#Server1
- + b#URLReader#url#Server2
- + b#URLReader#url#Server1
- = 1.0;

Exactly one DataProvider on exactly one server

• 1 such constraint per software component type

• Three constraints per usage variable of HW component

- Upper bound (according to variant model)
 - usage#Server1#RAM_[s1]#size <= 512.0;</pre>
- Lower bound (>= 0 or according to variant model)
 - usage#Server1#RAM_[s1]#size >= 0.0;
- Requirements (from contracts)
 - usage#Server1#RAM_[s1]#size =
 - 512.0 * b#FreeDecoder#fast#Server1 0 or 1
 - + **256.0** * b#FreeDecoder#slow#Server1
 - + **128.0** * b#CommercialDecoder#slow#Server1
 - + **512.0** * b#CommercialDecoder#fast#Server1
 - + 1536.0 * b#CommercialDecoder#ultrafast#Server1;

Baseload constraints

baseload#server_i = b#impl_x#mode_v#server_i

• Constraints for SW component NFPs

• throughput =

- 5.0 * b#URLReader#url#Server1
- + **20.0** * b#FileReader#file#Server2
- + **5.0** * b#URLReader#url#Server2
- + 20.0 * b#FileReader#file#Server1;

• User Request reflected by constraint, too

• framerate >= 20.0;

MILP for Contract Checking

1) Resource usage

- Improve resource utilization / energy relation
- Introduce time-dependant resource utilization models

2) Case studies

- VideoServer, StockTracking and further scientific case studies
- Industrial case study with a green enterprise application planning (EAP) system

- Energy Auto-Tuning requires contract negotiation
- Goal: select the optimal variant w.r.t. user demands and energy consumption
- Solution: **MILPs** can be used **for contract negotiation**
 - Are generated from models@runtime
 - Result includes additional information
 - Concrete resource usage of variant → resource control (e.g., setting the CPU frequency)
 - Concrete provided qualities

TECHNISCHE UNIVERSITÄT

DRESDEN

http://st.inf.tu-dresden.de/

claas.wilke@tu-dresden.de

BACKUP

Dynamic Variability in Complex, Adaptive Systems (DiVA) [3, 4]

- Management of dynamic adaptive systems
- Special focus on exponential growth of potential configurations
- Automated adaptation at runtime with
 - Goal-based optimization of NFPs
 - Rule-based system reconfiguration

Major difference to our approach

- Level of abstraction for non-functional property values
- DIVA symbolizes non-functional properties (e.g., LOW, MEDIUM, HIGH memory)
- We consider subsymbolic information (e.g., the actual value of free size of memory in MB)
- → allows deriving **finer-grained configurations**
- [3] F. Fleurey and A. Solberg. A domain specific modeling language supporting specification, simulation and execution of dynamic adaptive systems. In: Proceedings of MODELS '09, pp. 606–621, Springer, 2009.
- [4] B. Morin, O. Barais, G. Nain, and J.-M. Jézéquel. Taming dynamically adaptive systems using models and aspects. In: Proceedings of the 31st ICSE '09, pp. 122–132, IEEE, 2009.
 24.10.2011 Slide 17

MADAM/MUSIC [5]

- Management of **mobile** dynamic adaptive systems
- MUSIC aims to maximize **user utility** using manually written utility functions.
 - Goal is to maximize **user satisfaction**
 - Dependencies between qualities are not considered

Major difference to our approach

- We aim to maximize user utility while minimizing resource usage based on quality contracts between user, soft- and hardware
 - We focus on **efficient** user satisfaction
 - Dependencies between qualities are considered
 - Tradeoffs are negotiated

[5] http://ist-music.berlios.de/ - MUSIC project homepage.

- **Objective Function** (maximize profit, minimize cost, ...)
- Set of Constraints
- Example: Production of 2 types of items. Item x profit: 2€. Item y profit: 3€. Max production capacity: 300, demand for x and y each: 200. Objective function: maximize profit.

Example: VideoPlayer (SW types)

🔁 Navigator	Properties	X 🛃	' 🖪 🍰 💀 🎽 🗖		🖞 Server.structure_diagram 🛛 🚺 *VideoServer.structure_diagram 🔀 📃 🗖
SWComp Core Appearance	Name Ui framerate fp	Unit fps	Kind Calculated	[.	♦ VideoServer playVideo
Properties					Player uses Decoder uses DataProvider getStream decode readData getFile GetConnections PortConnectorType
					<pre>UnitLibrary.unit UnitLibrary.unit UnitLibrary { simple unit second : Integer; simple unit Watt : Real; simple unit MB : Integer; simple unit MD : Integer; simple unit Frames : Integer; complex unit MD s = MD per second; </pre>
					<pre>9 complex unit fps = Frames per second; 10 11 }</pre>

Structural Model of SW Component Types + NFPs

Structural Model of HW Resources

🔲 Properties 🛛	r 🗈] ╠ छ ▽ □ □	🗟 Server.structure_diagram 🕼 TwoServers.variant_diagram 🔀
PhysicalResource	rce		
Core	Name	Value	SimpleInfrastructure
Appearance	size [MB]	500	
Instance Properties	throughput [Mbits]	5.0	◆ Server1 ◆ Server2
			 Net (s1) Net (s1) Kingston 512MB Kingston 512MB Kingston 512MB AthlonXP Noname 2GB Network HDD Xeon 7650 Network Barracuda EC2 Behavior
			Behavior
4 III. •			K

Variant Model of Resources + NFP values

Variables 🔺	LP 0	MILP	result	
	2433	2433	2433	
b#CommercialDecoder#fast#Server1	0	0	0	
b#CommercialDecoder#fast#Server2	0	0	0	
b#CommercialDecoder#slow#Server1	1	0	0	
b#CommercialDecoder#slow#Server2	0	1	1	
b#CommercialDecoder#ultrafast#Server1	ч	0	0	
b#CommercialDecoder#ultrafast#Server2	0	0	0	
b#FileReader#file#Server1	0	0	0	
b#FileReader#file#Server2	0	8	0	
b#FreeDecoder#fast#Server1	0	0	0	
b#FreeDecoder#fast#Server2	0	0	0	
b#FreeDecoder#slow#Server1	0	0	0	
b#FreeDecoder#slow#Server2	0	0	0	
b#URLReader#url#Server1	1	1	1	
b#URLReader#url#Server2	-	0	0	
b#VLC#highQuality#Server1	0,333.	1	1	
b#VLC#highQuality#Server2	0,666.	0	0	
b#VLC#lowQuality#Server1	\sim	0	0	
b#VLC#lowQuality#Server2	0	0	0	
bitrate	5	5	5	
framerate	20	20	20	
throughput	5	5	5	
usage#Server1#CPU_[s1]#frequency	1300	1500	1500	
usage#Server1#HDD_[s1]#size	0	0	0	
usage#Server1#HDD_[s1]#throughput	0	0	0	
usage#Server1#Net_[s1]#bandwidth	5	5	5	
usage#Server1#RAM_[s1]#size	128	0	0	
usage#Server2#CPU#frequency	1000	800	800	
usage#Server2#HDD#size	0	0	0	
usage#Server2#HDD#throughput	0	0	0	
usage#Server2#Network#bandwidth	0	0	0	Slide 24
usage#Server2#RAM#size	0	128	128	

- [1] S. Götz, C. Wilke, M. Schmidt, S. Cech, and U. Aßmann. Towards energy auto tuning. In: Proceedings of First Annual International Conference on Green Information Technology (GREEN IT), pp. 122–129. GSTF, 2010.
- [2] S. Götz, C. Wilke, S. Cech, and U. Aßmann. Architecture and Mechanisms of Energy Auto-Tuning. To appear in: Sustainable Green Computing: Practices, Methodologies and Technologies, IGI Global, 2011
- [3] F. Fleurey and A. Solberg. A domain specific modeling language supporting specification, simulation and execution of dynamic adaptive systems. In: Proceedings of MODELS '09, pp. 606–621, Springer, 2009.
- [4] B. Morin, O. Barais, G. Nain, and J.-M. Jézéquel. Taming dynamically adaptive systems using models and aspects. In: Proceedings of the 31st ICSE '09, pp. 122–132, IEEE, 2009.

[5] http://ist-music.berlios.de/ - **MUSIC project homepage**.