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1) ORM = Object-Relational Mapper 

1
 



Problem 
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Goal 

 Automatic Adaptation of Object-Relational Mappings  
keeping the relational schema intact 
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Benefits Drawbacks 

Rapid Development Performance Penalities  

- postpone DB adjustments  
- independent parallel work  
- postpone query adjustments 

- in large scale scenarios  
(many versions) 
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Object-Roles 

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 5 of 12 

Person 

Employee 

Student 

Company 

University 

Classes 
(Players) 

Role 
Types 

Contexts 

joe:Person 

:Employee 

:Employee 

:Student 

IBM:Company 

SAP:Company 

TUD:University 



Solution 
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 Change Descriptor Roles (CDRs) 
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Role-Relational Mapping 

1. Separate Relation per Role 

• Complex queries / many joins 

 

2. Single Relation per Player-Role combination 

• Sparse data 

• Semantic redundancy  

 

3. Normalized Single Relation 

• Automatic normalization unfeasible 

• (due to high complexity) 

4. SQL:99 subtable 

• subtable = Role, supertable = player 

• context requires additional foreign key 

• rarely supported by DBMS 
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Rename CDR 
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- role decapsulates player (field access) 

- interception of player calls 



PullUp Attribute CDR 
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Solution 
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Developer’s 
intent required 



Related Work 

Coupled Evolution in Model-driven Engineering (e.g., [5, 6]) 

 

• Evolve model instances according to metamodel changes 

• The work presented here does not consider metamodel changes 

 instead evolving source of model transformation (OO to Relational) 

 different goal: shielding the target from complex changes 
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Related Work 

ComeBack [10] 

• shielding plugins/clients from framework evolution 

• holistic adaptation layer  

• Framework looks unchanged to clients vs. 
Application looks unchanged to ORM 

• Focus on control-flow (not on data-flow) 
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Related Work 

• MeDEA [7] allows to apply application schema changes to the DB 

• user needs to provide migration script 

 

 

• Terwilliger et al. [8] handle object-relational co-evolution by 
transforming  

• Changes of the application to  

 Changes of the mapping between the application and the DB 

• The goal is not to postpone model migration, but 

 To automatically perform model migration 

 

 

• Approaches like PRISM [9] allow to automatically evolve database 
queries 
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Summary 

Problem 

 Evolution of object-oriented domain model  

 Adjustments to relational schema required 

 Time-consuming 

 Changes beyond additions poorly supported by DBMS 

 

Goal 

 Evolve OO domain model keeping relational schema intact 

 Fosters development productivity 

 ability to postpone changes 

 parallel development (on the same data) 

 

Solution 

 Change-Descriptor Roles / Holistic Adaptation Layer 

 Adapting new OO domain model to its old version 

 Hiding changes from the ORM 
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Questions? 
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Discussion 

• Why Object-Roles? 

• Roles (only) perform structural adaptations 

• Two interacting collaborations 

 User interacts with new version objects 

 ORM interacts with old version objects 

• New role layers can be added on the fly 

 

• Indirection imposes problems: 

• Performance  

 meant for rapid development 

 not for productive use 

• Debugging  

 Debugging the OR mapping is hard 

 Debugging of application is not effected 

 

• Languages supporting role-based OO 

• powerJava [1], EpsilonJ [2], Rava [3], OT [4] (most mature) 
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Discussion 

• Scalability 

• Tradeoff between usability and scalability in terms of performance 

 Changes between first and current version  1 layer of indirection 

 Changes between last and current version  N layers of indirection 

 

• Weaknesses of the Approach 

• Annotations to be provided by the developer  
(to identify the semantics of changes) 

 

• Tool Support 

• The annotations can be generated using, e.g., the IDE refactoring log  

• CDRs are generated by default 

 

• Changes hard or impossible to model 

• changed visibility might look like hard to model  

 but is not, due to decapsulation [4] by roles 
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Problems due to Additions? 
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Class Role played by get/set 

 Developer renames class Lecture to Course and introduces 
new subclasses Lecture and Seminar. 
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