
27.06.2011

RAM-SE 2011 co-located with TOOLS 2011, Zurich, Switzerland

Sebastian Götz, Sebastian Richly and Uwe Aßmann

Department of Computer Science, Software Technology Group

Role-based Object-
Relational Co-Evolution

Context

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Person

name age student_id semester

… … … …

…

Course

name course_id

… …

tutor_id

…

person_id

…

…

course_id

…

Attendees

Relational Schema:

Student

student_id
semester

Person

name
age

Course

course_id
name

tutor

1

*

attendee

OO Domain Model:

O
R

M

Slide 2 of 12

1) ORM = Object-Relational Mapper

1

Problem

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Student

student_id
semester

Person

name
age

Course

course_id
name

*

attendee

OO Domain Model:
evolves:

Uni

name

Tutor

salary

tutor
Student

student_id
semester

Person

name
age

Course

course_id
name

1

*

attendee

OO Domain Model:

Person

name age student_id semester

… … … …

…

Course

name course_id

… …

tutor_id

…

person_id

…

…

course_id

…

Attendees

Relational Schema
needs adjustments:

Uni

…

name

…

Student

…

p_id

…

s_id

…

Tutor

…

salary

…

s_id

…

Person

name age student_id semester

… … … …

…

Course

name course_id

… …

tutor_id

…

person_id

…

…

course_id

…

Attendees

Splitting Relations

Redirection of Foreign Keys

New Relations

Foreign Key Reification

 Time-consuming

 Rare support for
changes beyond
addition

Slide 3 of 12

Goal

 Automatic Adaptation of Object-Relational Mappings
keeping the relational schema intact

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Benefits Drawbacks

Rapid Development Performance Penalities

- postpone DB adjustments
- independent parallel work
- postpone query adjustments

- in large scale scenarios
(many versions)

App-
lication

OO
Domain
Model

ORM DBMS
Relational
Schema

write

read

evolves stays unchanged

C
h

a
n

g
e
-

D
e
s
c
r
ip

to
r

R
o

le
s

Slide 4 of 12

Object-Roles

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 5 of 12

Person

Employee

Student

Company

University

Classes
(Players)

Role
Types

Contexts

joe:Person

:Employee

:Employee

:Student

IBM:Company

SAP:Company

TUD:University

Solution

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 6 of 12

 Change Descriptor Roles (CDRs)

Tutor

…

salary

…

s_id

…

student_id semester

… …

Course

name course_id

… …

tutor_id

…

student_id

…

…

course_id

…

Attendees

Student

…

Student

student_id
semester

Lecture

lect_no
name

*

attendee

Tutor

salary old: Course

old: course_id

Tutor

salary

Student

student_id
semester

Course

course_id
name

ORM

Moo,new

M oo,old

+

M R,old

+

Role-Relational Mapping

1. Separate Relation per Role

• Complex queries / many joins

2. Single Relation per Player-Role combination

• Sparse data

• Semantic redundancy

3. Normalized Single Relation

• Automatic normalization unfeasible

• (due to high complexity)

4. SQL:99 subtable

• subtable = Role, supertable = player

• context requires additional foreign key

• rarely supported by DBMS

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

C

R1

R2

RelC RelR1

RelR2

C

R1

R2

RelC+R1+R2

C

R1

R2

Rel1 Rel2

C

R1

R2

RelC

RelR1 RelR2

Slide 7 of 12

Rename CDR

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Class Role played by get/set

 Developer renames class Lecture to Course

Course

course_id

name
person_id

Lecture

lecture_id
name

lecturer

ORM

Developers View (new) ORM View (old)

Slide 8 of 12

- role decapsulates player (field access)

- interception of player calls

PullUp Attribute CDR

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

+ attr1

⁞

+ attrn

Inheritor

NewOwner‘

+attr1

⁞

+attrn

- attrX

Unaware

+attr1

⁞

+attrn

- attrX

+ attr1

⁞

+ attrn

+ attrX

NewOwner

set

+ attr1

⁞

+ attrn

OldOwner OldOwner‘

+attr1

⁞

+attrn

+ attrX

 get

a
tt

r x

ORM

Slide 9 of 12

Solution

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

ORM M+
OO,old  M+

R,old

Database M+
R,old

Application

developer

MOO,new

δ +
-

MOO,new  M+
OO,old

Change-descriptor
roles

Slide 10 of 12

Developer’s
intent required

Related Work

Coupled Evolution in Model-driven Engineering (e.g., [5, 6])

• Evolve model instances according to metamodel changes

• The work presented here does not consider metamodel changes

 instead evolving source of model transformation (OO to Relational)

 different goal: shielding the target from complex changes

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

New Domain
Model

OO
Metamodel

Relational
Schema

Relational
Metamodel

Old Domain
Model

Object-Role
Metamodel

Additive
changes

transformation adaptation

generated

Slide 11 of 12

Related Work

ComeBack [10]

• shielding plugins/clients from framework evolution

• holistic adaptation layer

• Framework looks unchanged to clients vs.
Application looks unchanged to ORM

• Focus on control-flow (not on data-flow)

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 12 of 12

Client 1
[F_V1]

Framework V1

Client 2
[F_V2]

Framework V2 Framework V3

Adaptation
Layer 31

Adaptation
Layer 32

Related Work

• MeDEA [7] allows to apply application schema changes to the DB

• user needs to provide migration script

• Terwilliger et al. [8] handle object-relational co-evolution by
transforming

• Changes of the application to

 Changes of the mapping between the application and the DB

• The goal is not to postpone model migration, but

 To automatically perform model migration

• Approaches like PRISM [9] allow to automatically evolve database
queries

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 13 of 12

Summary

Problem

 Evolution of object-oriented domain model

 Adjustments to relational schema required

 Time-consuming

 Changes beyond additions poorly supported by DBMS

Goal

 Evolve OO domain model keeping relational schema intact

 Fosters development productivity

 ability to postpone changes

 parallel development (on the same data)

Solution

 Change-Descriptor Roles / Holistic Adaptation Layer

 Adapting new OO domain model to its old version

 Hiding changes from the ORM

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 14 of 12

ORM M+
OO,old  M+

R,old

Database M+
R,old

Application

developer

MOO,new

δ +
-

MOO,new  M+
OO,old

Change-descriptor
roles

End

Thank You

Questions?

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Literature

[1] Baldoni, M.; Boella, G. & van der Torre, L.
Roles as a Coordination Construct: Introducing powerJava
Electronic Notes in Theoretical Computer Science, Elsevier Science Publishers B. V., 2006,
150, 9-29

[2] Monpratarnchai, S. & Tetsuo, T.
The Implementation and Execution Framework of a Role Model Based Language,
EpsilonJ
Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,
2008. SNPD '08. Ninth ACIS International Conference on, 2008, 269 -276

[3] He, C.; Nie, Z.; Li, B.; Cao, L. & He, K.
Rava: designing a Java extension with dynamic object roles
Engineering of Computer Based Systems, 2006. ECBS 2006. 13th Annual IEEE International
Symposium and Workshop on, 2006, pp. 452-459

[4] Herrmann, S.
ObjectTeams: Improving Modularity for Crosscutting Collaborations
NetObjectDays, Springer, 2002, 2591, 248-264

[5] B. Gruschko, D. Kolovos, and R. Paige.

 Towards Synchronizing Models with Evolving Metamodels.

 In Proceedings of the Work. MODSE, 2007.

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Literature

[6] G. Wachsmuth.

 Metamodel Adaptation and Model Coadaptation.

 Proceedings of the 21st ECOOP, volume 4069 of LNCS. Springer-Verlag, July 2007.

[7] E. Dominguez, J. Lloret, A. Rubio, and M. Zapata.

 Evolving the implementation of isa relationships in EER schemas.

 In Advances in Conceptual Modeling - Theory and Practice, volume 4231 of Lecture Notes in
Computer Science, pages 237-246. Springer Berlin / Heidelberg, 2006.

[8] J. Terwilliger, P. Bernstein, and A. Unnithan.

 Automated co-evolution of conceptual models, physical databases, and mappings.

 In Proceedings of Conceptual Modeling - ER 2010, volume 6412 of Lecture Notes in Computer
Science, pages 146-159. Springer Berlin / Heidelberg, 2010.

[9] C. Curino, H. Moon, and C. Zaniolo.

 Graceful database schema evolution: the prism workbench.

 In Proceedings of VLDB Endow., 1:761-772, August 2008.

[10] I. Savga, M. Rudolf and S. Götz
Rigorous and Practical Refactoring-Based Framework Upgrade
In Proceedings of 7th International Conference on Generative Programming and Component
Engineering (GPCE'08), 2008

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Discussion

• Why Object-Roles?

• Roles (only) perform structural adaptations

• Two interacting collaborations

 User interacts with new version objects

 ORM interacts with old version objects

• New role layers can be added on the fly

• Indirection imposes problems:

• Performance

 meant for rapid development

 not for productive use

• Debugging

 Debugging the OR mapping is hard

 Debugging of application is not effected

• Languages supporting role-based OO

• powerJava [1], EpsilonJ [2], Rava [3], OT [4] (most mature)

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 18 of 12

Discussion

• Scalability

• Tradeoff between usability and scalability in terms of performance

 Changes between first and current version  1 layer of indirection

 Changes between last and current version  N layers of indirection

• Weaknesses of the Approach

• Annotations to be provided by the developer
(to identify the semantics of changes)

• Tool Support

• The annotations can be generated using, e.g., the IDE refactoring log

• CDRs are generated by default

• Changes hard or impossible to model

• changed visibility might look like hard to model

 but is not, due to decapsulation [4] by roles

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 19 of 12

Problems due to Additions?

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Class Role played by get/set

 Developer renames class Lecture to Course and introduces
new subclasses Lecture and Seminar.

Slide 20 of 12

Course

course_id

name
person_id

Lecture

lect_id

name
person_id

Seminar

sem_id

name
person_id

Lecture$1

lect_id
name

person_id

Seminar

sem_id
name

person_id

Lecture

lecture_id
name

lecturer

