
27.06.2011

RAM-SE 2011 co-located with TOOLS 2011, Zurich, Switzerland

Sebastian Götz, Sebastian Richly and Uwe Aßmann

Department of Computer Science, Software Technology Group

Role-based Object-
Relational Co-Evolution

Context

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Person

name age student_id semester

… … … …

…

Course

name course_id

… …

tutor_id

…

person_id

…

…

course_id

…

Attendees

Relational Schema:

Student

student_id
semester

Person

name
age

Course

course_id
name

tutor

1

*

attendee

OO Domain Model:

O
R

M

Slide 2 of 12

1) ORM = Object-Relational Mapper

1

Problem

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Student

student_id
semester

Person

name
age

Course

course_id
name

*

attendee

OO Domain Model:
evolves:

Uni

name

Tutor

salary

tutor
Student

student_id
semester

Person

name
age

Course

course_id
name

1

*

attendee

OO Domain Model:

Person

name age student_id semester

… … … …

…

Course

name course_id

… …

tutor_id

…

person_id

…

…

course_id

…

Attendees

Relational Schema
needs adjustments:

Uni

…

name

…

Student

…

p_id

…

s_id

…

Tutor

…

salary

…

s_id

…

Person

name age student_id semester

… … … …

…

Course

name course_id

… …

tutor_id

…

person_id

…

…

course_id

…

Attendees

Splitting Relations

Redirection of Foreign Keys

New Relations

Foreign Key Reification

 Time-consuming

 Rare support for
changes beyond
addition

Slide 3 of 12

Goal

 Automatic Adaptation of Object-Relational Mappings
keeping the relational schema intact

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Benefits Drawbacks

Rapid Development Performance Penalities

- postpone DB adjustments
- independent parallel work
- postpone query adjustments

- in large scale scenarios
(many versions)

App-
lication

OO
Domain
Model

ORM DBMS
Relational
Schema

write

read

evolves stays unchanged

C
h

a
n

g
e
-

D
e
s
c
r
ip

to
r

R
o

le
s

Slide 4 of 12

Object-Roles

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 5 of 12

Person

Employee

Student

Company

University

Classes
(Players)

Role
Types

Contexts

joe:Person

:Employee

:Employee

:Student

IBM:Company

SAP:Company

TUD:University

Solution

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 6 of 12

 Change Descriptor Roles (CDRs)

Tutor

…

salary

…

s_id

…

student_id semester

… …

Course

name course_id

… …

tutor_id

…

student_id

…

…

course_id

…

Attendees

Student

…

Student

student_id
semester

Lecture

lect_no
name

*

attendee

Tutor

salary old: Course

old: course_id

Tutor

salary

Student

student_id
semester

Course

course_id
name

ORM

Moo,new

M oo,old

+

M R,old

+

Role-Relational Mapping

1. Separate Relation per Role

• Complex queries / many joins

2. Single Relation per Player-Role combination

• Sparse data

• Semantic redundancy

3. Normalized Single Relation

• Automatic normalization unfeasible

• (due to high complexity)

4. SQL:99 subtable

• subtable = Role, supertable = player

• context requires additional foreign key

• rarely supported by DBMS

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

C

R1

R2

RelC RelR1

RelR2

C

R1

R2

RelC+R1+R2

C

R1

R2

Rel1 Rel2

C

R1

R2

RelC

RelR1 RelR2

Slide 7 of 12

Rename CDR

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Class Role played by get/set

 Developer renames class Lecture to Course

Course

course_id

name
person_id

Lecture

lecture_id
name

lecturer

ORM

Developers View (new) ORM View (old)

Slide 8 of 12

- role decapsulates player (field access)

- interception of player calls

PullUp Attribute CDR

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

+ attr1

⁞

+ attrn

Inheritor

NewOwner‘

+attr1

⁞

+attrn

- attrX

Unaware

+attr1

⁞

+attrn

- attrX

+ attr1

⁞

+ attrn

+ attrX

NewOwner

set

+ attr1

⁞

+ attrn

OldOwner OldOwner‘

+attr1

⁞

+attrn

+ attrX

 get

a
tt

r x

ORM

Slide 9 of 12

Solution

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

ORM M+
OO,old M+

R,old

Database M+
R,old

Application

developer

MOO,new

δ +
-

MOO,new M+
OO,old

Change-descriptor
roles

Slide 10 of 12

Developer’s
intent required

Related Work

Coupled Evolution in Model-driven Engineering (e.g., [5, 6])

• Evolve model instances according to metamodel changes

• The work presented here does not consider metamodel changes

 instead evolving source of model transformation (OO to Relational)

 different goal: shielding the target from complex changes

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

New Domain
Model

OO
Metamodel

Relational
Schema

Relational
Metamodel

Old Domain
Model

Object-Role
Metamodel

Additive
changes

transformation adaptation

generated

Slide 11 of 12

Related Work

ComeBack [10]

• shielding plugins/clients from framework evolution

• holistic adaptation layer

• Framework looks unchanged to clients vs.
Application looks unchanged to ORM

• Focus on control-flow (not on data-flow)

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 12 of 12

Client 1
[F_V1]

Framework V1

Client 2
[F_V2]

Framework V2 Framework V3

Adaptation
Layer 31

Adaptation
Layer 32

Related Work

• MeDEA [7] allows to apply application schema changes to the DB

• user needs to provide migration script

• Terwilliger et al. [8] handle object-relational co-evolution by
transforming

• Changes of the application to

 Changes of the mapping between the application and the DB

• The goal is not to postpone model migration, but

 To automatically perform model migration

• Approaches like PRISM [9] allow to automatically evolve database
queries

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 13 of 12

Summary

Problem

 Evolution of object-oriented domain model

 Adjustments to relational schema required

 Time-consuming

 Changes beyond additions poorly supported by DBMS

Goal

 Evolve OO domain model keeping relational schema intact

 Fosters development productivity

 ability to postpone changes

 parallel development (on the same data)

Solution

 Change-Descriptor Roles / Holistic Adaptation Layer

 Adapting new OO domain model to its old version

 Hiding changes from the ORM

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 14 of 12

ORM M+
OO,old M+

R,old

Database M+
R,old

Application

developer

MOO,new

δ +
-

MOO,new M+
OO,old

Change-descriptor
roles

End

Thank You

Questions?

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Literature

[1] Baldoni, M.; Boella, G. & van der Torre, L.
Roles as a Coordination Construct: Introducing powerJava
Electronic Notes in Theoretical Computer Science, Elsevier Science Publishers B. V., 2006,
150, 9-29

[2] Monpratarnchai, S. & Tetsuo, T.
The Implementation and Execution Framework of a Role Model Based Language,
EpsilonJ
Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,
2008. SNPD '08. Ninth ACIS International Conference on, 2008, 269 -276

[3] He, C.; Nie, Z.; Li, B.; Cao, L. & He, K.
Rava: designing a Java extension with dynamic object roles
Engineering of Computer Based Systems, 2006. ECBS 2006. 13th Annual IEEE International
Symposium and Workshop on, 2006, pp. 452-459

[4] Herrmann, S.
ObjectTeams: Improving Modularity for Crosscutting Collaborations
NetObjectDays, Springer, 2002, 2591, 248-264

[5] B. Gruschko, D. Kolovos, and R. Paige.

 Towards Synchronizing Models with Evolving Metamodels.

 In Proceedings of the Work. MODSE, 2007.

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Literature

[6] G. Wachsmuth.

 Metamodel Adaptation and Model Coadaptation.

 Proceedings of the 21st ECOOP, volume 4069 of LNCS. Springer-Verlag, July 2007.

[7] E. Dominguez, J. Lloret, A. Rubio, and M. Zapata.

 Evolving the implementation of isa relationships in EER schemas.

 In Advances in Conceptual Modeling - Theory and Practice, volume 4231 of Lecture Notes in
Computer Science, pages 237-246. Springer Berlin / Heidelberg, 2006.

[8] J. Terwilliger, P. Bernstein, and A. Unnithan.

 Automated co-evolution of conceptual models, physical databases, and mappings.

 In Proceedings of Conceptual Modeling - ER 2010, volume 6412 of Lecture Notes in Computer
Science, pages 146-159. Springer Berlin / Heidelberg, 2010.

[9] C. Curino, H. Moon, and C. Zaniolo.

 Graceful database schema evolution: the prism workbench.

 In Proceedings of VLDB Endow., 1:761-772, August 2008.

[10] I. Savga, M. Rudolf and S. Götz
Rigorous and Practical Refactoring-Based Framework Upgrade
In Proceedings of 7th International Conference on Generative Programming and Component
Engineering (GPCE'08), 2008

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Discussion

• Why Object-Roles?

• Roles (only) perform structural adaptations

• Two interacting collaborations

 User interacts with new version objects

 ORM interacts with old version objects

• New role layers can be added on the fly

• Indirection imposes problems:

• Performance

 meant for rapid development

 not for productive use

• Debugging

 Debugging the OR mapping is hard

 Debugging of application is not effected

• Languages supporting role-based OO

• powerJava [1], EpsilonJ [2], Rava [3], OT [4] (most mature)

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 18 of 12

Discussion

• Scalability

• Tradeoff between usability and scalability in terms of performance

 Changes between first and current version 1 layer of indirection

 Changes between last and current version N layers of indirection

• Weaknesses of the Approach

• Annotations to be provided by the developer
(to identify the semantics of changes)

• Tool Support

• The annotations can be generated using, e.g., the IDE refactoring log

• CDRs are generated by default

• Changes hard or impossible to model

• changed visibility might look like hard to model

 but is not, due to decapsulation [4] by roles

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 19 of 12

Problems due to Additions?

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

Class Role played by get/set

 Developer renames class Lecture to Course and introduces
new subclasses Lecture and Seminar.

Slide 20 of 12

Course

course_id

name
person_id

Lecture

lect_id

name
person_id

Seminar

sem_id

name
person_id

Lecture$1

lect_id
name

person_id

Seminar

sem_id
name

person_id

Lecture

lecture_id
name

lecturer

