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1) ORM = Object-Relational Mapper 
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Problem 
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Goal 

 Automatic Adaptation of Object-Relational Mappings  
keeping the relational schema intact 
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Benefits Drawbacks 

Rapid Development Performance Penalities  

- postpone DB adjustments  
- independent parallel work  
- postpone query adjustments 

- in large scale scenarios  
(many versions) 
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Object-Roles 
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Solution 
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 Change Descriptor Roles (CDRs) 
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Role-Relational Mapping 

1. Separate Relation per Role 

• Complex queries / many joins 

 

2. Single Relation per Player-Role combination 

• Sparse data 

• Semantic redundancy  

 

3. Normalized Single Relation 

• Automatic normalization unfeasible 

• (due to high complexity) 

4. SQL:99 subtable 

• subtable = Role, supertable = player 

• context requires additional foreign key 

• rarely supported by DBMS 
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Rename CDR 
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Class Role played by get/set 

 Developer renames class Lecture to Course 
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- role decapsulates player (field access) 

- interception of player calls 



PullUp Attribute CDR 
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Solution 
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Developer’s 
intent required 



Related Work 

Coupled Evolution in Model-driven Engineering (e.g., [5, 6]) 

 

• Evolve model instances according to metamodel changes 

• The work presented here does not consider metamodel changes 

 instead evolving source of model transformation (OO to Relational) 

 different goal: shielding the target from complex changes 
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Related Work 

ComeBack [10] 

• shielding plugins/clients from framework evolution 

• holistic adaptation layer  

• Framework looks unchanged to clients vs. 
Application looks unchanged to ORM 

• Focus on control-flow (not on data-flow) 
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Related Work 

• MeDEA [7] allows to apply application schema changes to the DB 

• user needs to provide migration script 

 

 

• Terwilliger et al. [8] handle object-relational co-evolution by 
transforming  

• Changes of the application to  

 Changes of the mapping between the application and the DB 

• The goal is not to postpone model migration, but 

 To automatically perform model migration 

 

 

• Approaches like PRISM [9] allow to automatically evolve database 
queries 
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Summary 

Problem 

 Evolution of object-oriented domain model  

 Adjustments to relational schema required 

 Time-consuming 

 Changes beyond additions poorly supported by DBMS 

 

Goal 

 Evolve OO domain model keeping relational schema intact 

 Fosters development productivity 

 ability to postpone changes 

 parallel development (on the same data) 

 

Solution 

 Change-Descriptor Roles / Holistic Adaptation Layer 

 Adapting new OO domain model to its old version 

 Hiding changes from the ORM 
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Questions? 
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Discussion 

• Why Object-Roles? 

• Roles (only) perform structural adaptations 

• Two interacting collaborations 

 User interacts with new version objects 

 ORM interacts with old version objects 

• New role layers can be added on the fly 

 

• Indirection imposes problems: 

• Performance  

 meant for rapid development 

 not for productive use 

• Debugging  

 Debugging the OR mapping is hard 

 Debugging of application is not effected 

 

• Languages supporting role-based OO 

• powerJava [1], EpsilonJ [2], Rava [3], OT [4] (most mature) 
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Discussion 

• Scalability 

• Tradeoff between usability and scalability in terms of performance 

 Changes between first and current version  1 layer of indirection 

 Changes between last and current version  N layers of indirection 

 

• Weaknesses of the Approach 

• Annotations to be provided by the developer  
(to identify the semantics of changes) 

 

• Tool Support 

• The annotations can be generated using, e.g., the IDE refactoring log  

• CDRs are generated by default 

 

• Changes hard or impossible to model 

• changed visibility might look like hard to model  

 but is not, due to decapsulation [4] by roles 
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Problems due to Additions? 
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Class Role played by get/set 

 Developer renames class Lecture to Course and introduces 
new subclasses Lecture and Seminar. 
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