

Department of Computer Science, Software Technology Group

Role-based Object-Relational Co-Evolution

Sebastian Götz, Sebastian Richly and Uwe Aßmann

27.06.2011

DRESDEN concept Exzellenz aus Wissenschaft

RAM-SE 2011 co-located with TOOLS 2011, Zurich, Switzerland

OO **Domain** Model:

Relational Schema:

1) ORM = Object-Relational Mapper

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 2 of 12

Splitting Relations

Foreign Key Reification

 Automatic Adaptation of Object-Relational Mappings keeping the relational schema intact

Benefits	Drawbacks
Rapid Development	Performance Penalities
 postpone DB adjustments independent parallel work postpone query adjustments 	 in large scale scenarios (many versions)

27.06.2011Götz et al. - Role-based Object-Relational Co-EvolutionSlide 5 of 12

→ Change Descriptor Roles (CDRs)

1. Separate Relation per Role

Complex queries / many joins

2. Single Relation per Player-Role combination

- Sparse data
- Semantic redundancy

3. Normalized Single Relation

- Automatic normalization unfeasible
- (due to high complexity)

4. SQL:99 subtable

- subtable = Role, supertable = player
- context requires additional foreign key
- rarely supported by DBMS

→ Developer renames class Lecture to Course

Götz et al. - Role-based Object-Relational Co-Evolution

Slide 9 of 12

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution Slide 10 of 12

Coupled Evolution in Model-driven Engineering (e.g., [5, 6])

- Evolve model instances according to metamodel changes
- The work presented here does not consider metamodel changes
 - instead evolving source of model transformation (OO to Relational)
 - different goal: shielding the target from complex changes

ComeBack [10]

- shielding plugins/clients from framework evolution
- holistic adaptation layer
- Framework looks unchanged to clients vs. Application looks unchanged to ORM
- Focus on control-flow (not on data-flow)

- **MeDEA** [7] allows to apply application schema changes to the DB
 - user needs to provide *migration script*
- **Terwilliger et al.** [8] handle object-relational co-evolution by transforming
 - Changes of the application to Changes of the mapping between the application and the DB
 - The goal is not to postpone model migration, but
 - To automatically perform model migration
- Approaches like **PRISM** [9] allow to automatically evolve database queries

Problem

- Evolution of object-oriented domain model
- Adjustments to relational schema required
 - Time-consuming
 - Changes beyond additions poorly supported by DBMS

Goal

- Evolve OO domain model keeping relational schema intact
 - Fosters development productivity
 - ability to postpone changes
 - parallel development (on the same data)

Solution

- Change-Descriptor Roles / Holistic Adaptation Layer
 - Adapting new OO domain model to its old version
 - Hiding changes from the ORM

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

 Baldoni, M.; Boella, G. & van der Torre, L.
 Roles as a Coordination Construct: Introducing powerJava Electronic Notes in Theoretical Computer Science, Elsevier Science Publishers B. V., 2006, 150, 9-29

 [2] Monpratarnchai, S. & Tetsuo, T.
 The Implementation and Execution Framework of a Role Model Based Language, EpsilonJ

Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2008. SNPD '08. Ninth ACIS International Conference on, **2008**, 269 -276

- [3] He, C.; Nie, Z.; Li, B.; Cao, L. & He, K.
 Rava: designing a Java extension with dynamic object roles
 Engineering of Computer Based Systems, 2006. ECBS 2006. 13th Annual IEEE International Symposium and Workshop on, 2006, pp. 452-459
- [4] Herrmann, S.

ObjectTeams: Improving Modularity for Crosscutting Collaborations *NetObjectDays, Springer,* **2002**, *2591*, 248-264

[5] B. Gruschko, D. Kolovos, and R. Paige.
 Towards Synchronizing Models with Evolving Metamodels.
 In Proceedings of the Work. MODSE, 2007.

27.06.2011 Götz et al. - Role-based Object-Relational Co-Evolution

- [6] G. Wachsmuth.
 Metamodel Adaptation and Model Coadaptation.
 Proceedings of the 21st ECOOP, volume 4069 of LNCS. Springer-Verlag, July 2007.
- [7] E. Dominguez, J. Lloret, A. Rubio, and M. Zapata.
 Evolving the implementation of isa relationships in EER schemas.
 In Advances in Conceptual Modeling Theory and Practice, volume 4231 of Lecture Notes in Computer Science, pages 237-246. Springer Berlin / Heidelberg, 2006.
- [8] J. Terwilliger, P. Bernstein, and A. Unnithan.
 Automated co-evolution of conceptual models, physical databases, and mappings.
 In Proceedings of Conceptual Modeling ER 2010, volume 6412 of Lecture Notes in Computer Science, pages 146-159. Springer Berlin / Heidelberg, 2010.
- [9] C. Curino, H. Moon, and C. Zaniolo.
 Graceful database schema evolution: the prism workbench.
 In Proceedings of VLDB Endow., 1:761-772, August 2008.
- [10] I. Savga, M. Rudolf and S. Götz
 Rigorous and Practical Refactoring-Based Framework Upgrade
 In Proceedings of 7th International Conference on Generative Programming and Component Engineering (GPCE'08), 2008

• Why Object-Roles?

- Roles (only) perform structural adaptations
- Two interacting collaborations
 - User interacts with new version objects
 - ORM interacts with old version objects
- New role layers can be added on the fly

• Indirection imposes problems:

Performance

- \rightarrow meant for rapid development
- \rightarrow not for productive use
- Debugging
 - \rightarrow Debugging the OR mapping is hard
 - \rightarrow Debugging of application is not effected

• Languages supporting role-based OO

• powerJava [1], EpsilonJ [2], Rava [3], OT [4] (most mature)

- Scalability
 - Tradeoff between usability and scalability in terms of performance
 - Changes between first and current version \rightarrow 1 layer of indirection
 - Changes between last and current version \rightarrow N layers of indirection

• Weaknesses of the Approach

• Annotations to be provided by the developer (to identify the semantics of changes)

• Tool Support

- The annotations can be generated using, e.g., the IDE refactoring log
- CDRs are generated by default

• Changes hard or impossible to model

- changed visibility might look like hard to model
 - but is not, due to *decapsulation* [4] by roles

Developer renames class Lecture to Course and introduces new subclasses Lecture and Seminar.

