

Department of Computer Science Institute for System Architecture, Chair for Computer Networks

Application Development for Mobile and Ubiquitous Computing

Seminar Task

Final Presentation

GroupNo.16 Team: Jun Sun & Zhen Xiao

Main Concept:

Now our main UI looks like this:

Setting and About UI:

UI Design

- Based on jfeinstein10 / SlidingMenu library
- SlidingMenu + Fragments * 3

•••∘∘ BELL 🗢	4:21 PM	∦ 22% 📼
<	MuskRat	
Player		
Settings		
About		
Quit		
		Y

How to get cadence data?

- How to get cadence data?
- Running a background service.
- It contains a footfall detector and push data in some interval.

- private final Runnable mUpdateCadenceTask = new Runnable() {
- @Override
- public void run() {

}

}

- int cadence = footFallDetector.getCurrentCadence();
- if (clientHandler != null) {
 - Message message = Message.obtain();
 - message.arg = cadence;
 - clientHandler.sendMessage(message);
 - serviceHandler.postDelayed(this, 2000);

};

Footfall Detector

Get acceleration data from acceleration sensor

- Get acceleration data from acceleration sensor
- Find vertical acceleration
 - The axis which has biggest average acceleration value is close to vertical.
 - Because the earth gravity is a constant.

- Get acceleration data from acceleration sensor
- Find vertical acceleration
 - The axis which has biggest average acceleration value is close to vertical.
 - Because the earth gravity is a constant.
- Calculate average acceleration in a time period

- Get acceleration data from acceleration sensor
- Find vertical acceleration
 - The axis which has biggest average acceleration value is close to vertical.
 - Because the earth gravity is a constant.
- Calculate average acceleration in a time period
- Filtering, each value above average + threshold is considered as a foot fall

- Get acceleration data from acceleration sensor
- Find vertical acceleration
 - The axis which has biggest average acceleration value is close to vertical.
 - Because the earth gravity is a constant.
- Calculate average acceleration in a time period
- Filtering, each value above average + threshold is considered as a foot fall
- Calculate cadence, in step per minute

- Contribution:
 - Developed a cadence detector that can actually work.
 - Developed a music player that can work with it.

- Contribution:
 - Developed a cadence detector that can actually work.
 - Developed a music player that can work with it.
- Limits:
 - Finally we gave up implementing a speed detector
 - Too much work combined with the cadence detector
 - It is too enegy consuming

- Music Player is quite simple
 - Cannot download musics
 - Uses musics and playlists locally only

- Music Player is quite simple
 - Cannot download musics
 - Uses musics and playlists locally only
- This has good sides:
 - Users already have plenties of choices
 - This app is designed for exercising

- Music Player is quite simple
 - Cannot download musics
 - Uses musics and playlists locally only
- This has good sides:
 - Users already have plenties of choices
 - This app is designed for exercising
- And bad sides of cource:
 - Not so "Powerful"

Thank You!