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Technologies

Adventurer App

Sensors
Magnetic Field for compass

Google Location API
dynamic GPS

OSMDroid
Map Data and POI



Challenges

adaptation mechanisms

Connectivity
Usage of Offline Maps and cached 
Map-Data, when possible

Battery Optimization

Optimize energy consumption 
depending on the type of adventure

context information

Adventurer profile

Connection Info

Age of cached data
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Open Problems
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Open Problems

● Issues with public OSM Servers
● They have limited bandwidth and requests

○ You can’t load > 500 POIs at the same time
○ Map download is very slow
○ Fix: Setup own server with OSM data and provide the data that way



What have we learned?

Kotlin >> Java

Code Comparison
Java
TextView text = (TextView) findViewById(R.id.textView); 
text.setText("Hello World");
Kotlin
textView.setText("Hello World")



What have we learned?

Kotlin >> Java

Implementing 
compass and GPS 
is harder than 

expected

Creating 

performance issues 

is easy
...

Correcting them is 
hard

Use 

available

API’s!


