
The Adventurer
App

Final Product



The Application

LivƄ-DemƎ



Technologies

Adventurer App

Sensors
Magnetic Field for compass

Google Location API
dynamic GPS

OSMDroid
Map Data and POI



Challenges

adaptation mechanisms

Connectivity
Usage of Offline Maps and cached 
Map-Data, when possible

Battery Optimization

Optimize energy consumption 
depending on the type of adventure

context information

Adventurer profile

Connection Info

Age of cached data



Final Architecture

HTTPS 
RequestsApp OSM

Openstreetmap
JSON API

POIMap

osmdroidDevice
Interfaces

Sensor
MAGNETIC_FIELD

Location 
Manager

GPS

Storage
Preferences

Settings
SQLite
Map Tiles

observer

Download
(Offline Availability)

Offline

Online



Open Problems

HTTPS 
Requests

App OSM
Openstreetmap

JSON API

POIMap

osmdroidDevice
Interfaces

Sensor
MAGNETIC_FIELD

Location 
Manager

GPS

Storage
Preferences

Settings
SQLite
Map Tiles

observer

Download
(Offline Availability)

Offline

Online

Own OSM 
Mirror
POI and Maps



Open Problems

● Issues with public OSM Servers
● They have limited bandwidth and requests

○ You can’t load > 500 POIs at the same time
○ Map download is very slow
○ Fix: Setup own server with OSM data and provide the data that way



What have we learned?

Kotlin >> Java

Code Comparison
Java
TextView text = (TextView) findViewById(R.id.textView); 
text.setText("Hello World");
Kotlin
textView.setText("Hello World")



What have we learned?

Kotlin >> Java

Implementing 
compass and GPS 
is harder than 

expected

Creating 

performance issues 

is easy
...

Correcting them is 
hard

Use 

available

API’s!


