
Final presentation: Application Development for Mobile and Ubiquitous
Computing

Language Tandem Finder

Salohy Miarisoa, Ljupka Titizova
Dresden, January 2017

AGENDA

● Our Application
● Application Scenario

Use Cases and Mockups
● Architecture
● Used Technologies
● Tackled Challenges

 Context and Adaptations
● Lessons learned and Pitfalls

24.01.2017
Service and Cloud Computing

Folie 2 von XYZ

The Application

● Goal: Intermediation of Language Tandems between Students
● User:

○ e-mail address
○ offered language
○ language the user wants to study

● Matches nearby
● Overview of offered languages near the user

Use Cases

Mockups

Mockups

Architecture

● Demand-Driven
Architecture

● Client
● Server
● Database

Technologies

Client Server

Tackled Challenges

Connectivity Challenge

Context: Network type, location, nearby persons
Adaptation:
● If connection is good (eg: 4G) -> Display map
● Otherwise -> Display list of nearby Tandem matches
● Client-side: detection of location of user

○ Context Source: GPS ((latitude, longitude))
navigator.geolocation.getCurrentPosition()

● Server-side: search entries near the client position

Connectivity Challenge: Map with Tandem Partners

Tandem.find({
 "languages.offer": offer,
 "languages.search": search,
 "location": {
 $near: [latitude, longitude],
 $maxDistance: 6
 }
 })

● MongoDB
○ $near and

$maxDistance for
finding entries near
the user

Offline Challenge

● Context:
○ Network connection loss
○ Detection online/offline status

● Adaptation:
○ Client sends requests to cache and not to server
○ Use cached Data from Apollo Client

(InMemoryCache)
○ Get notification about connectivity status

■ Context Source: last queries

Connectivity/Offline Challenge:

● Obtaining the connection type
○ NetInfo from React Native
○ Handle connection type changes

NetInfo.isConnected.addEventListener(

 'connectionChange',

 handleFirstConnectivityChange

);

Usability Challenge

● Context:
○ User changes his location

● Adaptation:
○ Show different tandem matches based on user

input
■ Context Source: database

Adaptation of Communication

● Lazy Evaluation:
○ first load only certain number of Tandem matches
○ on scroll: data fetched from database, Tandem

matches added

● Caching:
○ get last loaded queries from Apollo-Client

Lessons learned and pitfalls

Learned
● Network connection
● Lazy Evaluation
● Client side cache

Challenges
● Versions of some

packages
● Different methods to use

frameworks of our choice

Thank you for your attention!

