
Final Presentation

CheckIt

APPLICATION DEVELOPMENT FOR MOBILE 
AND UBIQUITOUS COMPUTING

Group 14:
João Rosário

Tiago Caldinhas



Application Scenario

Idea: 

• See all interesting places around the device, shown 

in a list generated by our app;

• Go to one of those places;

• Get prompt with a push notification when you arrive;

• Take a picture at the place and CHECK IT.

Basically, we give a tourist a simple and interactive way to know the 

most interesting places around himself. 

The best application for small travels to unknown places!



Screenshots – Login and Register



Screenshots – Permissions



Screenshots – Main Page: TabsActivity



Screenshots – To Visit



Screenshots – Notification & Camera 



Screenshots – Visited



Screenshots – Photos



Screenshots – Comments



Technical context: Offline Usage
• Capture if the device has a network connection, using 

android.net.ConnectivityManager and android.net.NetworkInfo.

Adaptation:
• Adapt the loading of the results by choosing if they should be loaded from

the server or from a file in cache: if the device has a network connection, uses 
Google Services to obtain updated information, otherwise uses the results of
the last search (cached). 

• Every time we get updated information from the server, this one is stored in 
cache. 

private boolean isNetworkAvailable(){

ConnectivityManager connectivityManager = 

(ConnectivityManager)getSystemService(Context.CONNECTIVITY_SERVICE);

NetworkInfo activeNetworkInfo = connectivityManager.getActiveNetworkInfo();

return (activeNetworkInfo != null && activeNetworkInfo.isConnected());

}

Adaptation and Context



Adaptation and Context

Technical context: Network Awareness 
• Detect type and quality of network connection using android.net.NetworkInfo, 

android.net.wifi.WifiInfo and android.telephony.TelephonyManager.

Adaptation:
• Adapt the amount of data transferred: depending on Wifi’s connection speed or 

the type of mobile data connection, fetch more or less photos of a specific place 
(from the server).

if (activeNetwork.getType() == ConnectivityManager.TYPE_WIFI) {

Checks Wifi connection speed

} else if (activeNetwork.getType() == ConnectivityManager.TYPE_MOBILE) {

Checks type of mobile data connection

}



Physical context: Current location
• Capture the device’s location, using android.location.LocationManager.

Adaptation:
• Adapt the results of the search for interesting places: Using the current 

location (latitude and longitude) we use the Text Search Request from Google 
Places API to get a set of locations.

• The results should be inside of a given radius, centered at the device’s 
location: The radius starts with a default value of 1000m, but if the search 
doesn’t return enough results the radius increases gradually (to a maximum of 
10Km).

Example of a request:
https://maps.googleapis.com/maps/api/place/textsearch/json?query=restaurant&location=51.0429730, 
13.7223350&radius=X&type=point_of_interest&key=OUR_KEY

Latitude found with the LocationManager

Longitude found with the LocationManager

Adaptation and Context



Physical context: Current location
• Capture the device’s location, using android.location.LocationManager.

Adaptation:
• Send push-notification to notify the user about being near a place of 

interest: When the device’s location is close enough to one of the places to 
visit (inside a radius of ≈100m, centered in the place’s location), prompt the 
user, so that he can take a photo and mark the place as “Visited”.

Adaptation and Context

if ((deviceLocation.getLatitude() >= placeToVisit.getPlaceLat() - 0.001) //-100m

&& (deviceLocation.getLatitude() <= placeToVisit.get(i).getPlaceLat() + 0.001) //+100m

&& (deviceLocation.getLongitude() >= placeToVisit.get(i).getPlaceLng() - 0.001) //-100m

&& (deviceLocation.getLongitude() <= placeToVisit.get(i).getPlaceLng() + 0.001)) //+100m

{

Prompt the user about being near a place to visit.

}



Architecture

Google 
Places API

Firebase

GPS

Android Client

Firebase
Database

Firebase
Storage



Technologies

Client:
• Android
• GPS for location tracking
• Mobile Camera
• Google Maps API
• Google Places API

Server:
• Firebase



Lessons Learned

• How to use AndroidStudio to develop an Adroid App. 
• How to use Google Firebase.
• Good work plan = smooth execution (without major 

delays)
• Perform more tests in order to cover all the bugs 

(specifically in the push notification system)



Next Steps

• Implement a like/dislike system to photos and comments.
• Improve our app’s power consumption (even more).
• Implement a gamification system, that would “reward” the 

user for visiting the places of interest.
• Give our app a little of a “Social Network” touch:

• User profile;
• Ability to share the places you visit with other users;
• Ability to follow someone.

• …

There’s always room to improve!


