
Application Development for Mobile and Ubiquitous Computing

TANDEM-APP

Salohy Miarisoa, Ljupka Titizova
Dresden, December 2017

AGENDA

• Scenario
• Technologies
• Adaptation and Context
• Strategies
• Current state
• What’s next

Scenario

Tom from the UK
wants to learn
German The Tandem-App

gives him a list of
people near his
location who
want to learn
English and can
speak German

Tom opens the
Tandem-App
and

Tom can
directly see
how far from
his position
those people
are

Tom chooses
one and
contact him/her

Scenario through Activity Diagram

Technologies

Demand-Driven Architecture Multiplatform

Adaptation: Application Data
Context: Network, Backend
Adaptation:

● As far as possible, getting minimum information from
server to minimize payload (Demand Driven
Architecture).

● Load x nearest matches while good connection, Load y
nearest matches while bad connection (y < x). Get
more when the user scroll down.

Adaptation: Application Data

The type of connection is checked on the client side using
“NetInfo” from react-native

NetInfo.getConnectionInfo()

Depending on the connection, the client requests more or less
data to the server.

Adaptation: Application Data

While checking the connection, if null is returned, the application
is in offline mode. The client will not send requests directly to the
server but to the cache.

Apollo offers a cache-feature called “InMemmoryCache”, which
saves all previous requested data.

Adaptation: Map

Context: Network, Location, nearby Person
Adaptation:

● Only display Map if the connection is good (eg: 4g) or if the
user wants it explicitly, otherwise a list of nearby Tandem
is given as Text.

● User Location is detected on the client-side (latitude,
longitude)
navigator.geolocation.getCurrentPosition()

● Server searches entries near the client position

Adaptation: Map

Tandem.find({
 "languages.offer": offer,
 "languages.search": search,
 "location": {
 $near: [latitude, longitude],
 $maxDistance: 6
 }
 })

MongoDb uses $near and
$maxDistance to find entries
near the user.

Sources of Context

1. Database
2. GPS - Google
3. User Input

Summary of Strategies

Challenges
1. Connectivity
2. Offline
3. Usability

Strategies
1. On Demand Data, check

of connection
2. Use of cache on the

client side
3. Material Design

Current state

Server
1. Set up
2. Geo-Location
3. Accept request from

client
4. Return data desired by

client

Client
1. Set up
2. Connect to server
3. Display Map with nearby

Tandem
4. Display Login
5. Get nearby searched

location from server
6. check connection and

display the
corresponding view

What’s next?

Server
1. User Authentication
2. User (Login, register)

Client
1. combination of

Geolocation and user
2. Offline challenge
3. Design
4. Lazy evaluation

Screenshot of current states

