
Erasmus Web
Maria Sofia Nascimento

Mariana Aires

Application Development for Mobile and Ubiquitous
Computing

Winter Semester 18/19

➢ Location-based event planner;
○ Centralization of events happening in an area

➢ Matching users with fellow students in the same
situation;

○ Stimulate connections between users via
interactions in the application.

Idea

Use cases

The app

Important feature
○ Transmit relevant and opportune information (via notifications);

How?
- Detect user location with GPS;

LocationManager.GPS_PROVIDER && LocationManager.NETWORK_PROVIDER &&

JobService

- Receive updates with events happening nearby;
Firebase Cloud Functions && Firebase FirebaseMessagingService

What does it do?
- Send push-notifications when the user is within 1 km of a event

within the next hour (using GPS tracking), prompting the user with
the event page.

How it works
○ Transmit relevant and opportune information (via

notifications);

API
1. user sends location

update to server

2. Server checks
events nearby that

start in the next
hour

3. Server notifies the user of
the events found

https://docs.google.com/file/d/1JT4pg-fS62JDadCEJIL0oG6-tL25B3KK/preview

Challenges
➢ Usability

○ Minimize user input interaction.
➢ Energy

○ Minimize the energy consumption caused by GPS
usage.

Energy
○ Minimize the energy consumption caused by GPS usage.

Physical Context:
- Detect the GPS location;
- Two types of GPS tracking: passive until the detection of movement; and

active until the detection of lack of movement;
GoogleAPIClient && LocationRequest &&

LocationServices.FusedLocationAPI;

- Use of background services to manage the tracking;
JobService API && FirebaseDispatcher API;

- Job job = firebaseJobDispatcher.newJobBuilder().build();

- firebaseDispatcher.schedule(job);

Energy
○ Minimize the energy consumption caused by GPS usage.

Adaptation:
There are two types of GPS tracking:

- Passive: detects user location in intervals of 6 minutes (because Android’s
native battery optimization protocols will stop services that don’t “do
something” for a max of 10 minutes, from our benchmarks around 7-8 min);
If the location is detected to have changed (> 500 m), then the GPS
continuous tracking is activated;

- Active: enables GPS continuous tracking only when the device is detected to
be moving; check every 20 seconds for location changes around 200m and
will send location updates to server; will return to passive mode after
enough time of lack of movement is show (from our benchmarks, between
3-5 min);

Energy
○ Minimize the energy consumption caused by GPS usage.

Adaptation:
-Starting the app schedules
background job;
-Background Job starts in
 passive mode;
-Detection of movement changes the
 status to active;
-Android’s native protocols will stop
 the job after a few tries of
 unsuccessful location updates;
-Our app forces the service to restart
in passive mode again;

Usability
○ Minimize user interaction;

Physical Context:
- Detect user location with GPS;

LocationManager.GPS_PROVIDER && LocationManager.NETWORK_PROVIDER

- Query last location from the database;
Firebase Realtime Database

Usability
○ Minimize user interaction

Adaptation:
- Database maintains user’s last searched location; when the map is opened,

the last searched location will be centered; this search has a timeout of two
weeks; if that timeout is reached, or no last searched location is found, the
map will show the user’s current location;

Usability
○ Minimize user interaction

- VIDEO

https://docs.google.com/file/d/1hayxhdEtE_26IwvZnGLwvBCNn-6QSXKN/preview

Usability
○ Minimize user interaction

Adaptation:
- (In the map) Display a initial list of events using the bounds of the screen as

the coordinates’ bounds, limiting the amount of events loaded; if the user
zooms out or moves the camera, this amount will be increased and more
events will be loaded (based on the new bounds of the screen in the current
position);

- (In the list) Displays a initial list of events and when the user presses “Show
more results”, the search radius is increased by two kilometers, making the
results appear ordered by distance.

https://docs.google.com/file/d/1WBc7hMSDjCbfK8_gJ5-P2ffOGZgFWGo1/preview

▪ Android OS/Android Studio;
▪ Firebase Realtime Database;
▪ Firebase Cloud Functions, that was used to mimic a

server that both interacts with the app and maintains
consistency of the database through triggers;

▪ GPS;
▪ Google Maps API, for the implementation of the map;
▪ Firebase functionalities and google APIs for the

implementation of challenges;

Technologies

Implementation

Realtime
Database

GPS

API

Work Plan
➢ 01.11.2018: First presentation
➢ November

▪ Begin of implementation
▪ Back end development

➢ December
▪ First prototype
▪ Front end development

➢ 14.12.2018: Adaption Concepts Presentation
➢ January

▪ UI Desgin
▪ Bugfixing/Testing

➢ 01.02.2019: Final Presentation

▪ UI improvement, since the focus was into functionality;
▪ More functionalities we didn’t have time to implement;
▪ Some efficient improvements could be done, especially

regarding querying from the database;

▪ A lot of knowledge on android since we hadn’t worked
with it before;

▪ We were too optimistic regarding how much could be
done in the amount of time we had;

Open issues and lessons learned

END

