
Spover
Speedoverlay for navigation



Use cases

1) automatic application start and stop

2) while driving

3) adapts UI based on current speed

4) light change causing a theme change

5) caching speed limit data



Leaving the 
bounding box
 



Technologies
● Android SDK

○ Service to display an UI over other apps

○ HttpsUrlConnection to fetch data from OpenStreetMaps API

○ Room database library to save speed limit data locally

● Jackson library to parse XML response

● JUnit for testing



Context Information
● Current location of device (and thus the users location)

○ obtained via the GPS unit of the device
○ allows calculation of current speed

● Brightness of the environment
○ obtained via the brightness sensor of the device
○ evaluated to higher level context (light modes: light and dark)

● Start of navigation
○ obtained by listening for the Google Maps notification

● Speed limit data
○ fetched from OpenStreetMaps



Adaptation Mechanisms
● display current speed

○ current measured speed = traveled distance between last two points divided by needed time
○ current speed is weighted speed history

■ recently added values are higher weighted
■ compensates sudden jumps / location inaccuracies

● display current speed limit
○ mapping to closest way (next slide)
○ evaluating potential speed limit condition (e.g. time, weekdays, ...)
○ setting speed limit as number or emoji



Way mapping

● current way = way with
min(distance1 + distance2)



Adaptation of application data
Reduction on server side by:

● requesting only data related to streets

Reduction and transformation on client side by:

● filtering received data and keeping only minimum to determine the current 
way and speed limit

● parsing received xml to database entries



Adaptation of UI/UX
● with help of current speed and speed limit:

○ adapt the UI to driving style
○ emit warnings when first time exceeding speed 

limit + self set threshold (can be disabled)

● adapt overlay theme to current light mode

● starting/stopping Spover automatically when a navigation start/end ist 
detected

○ realized through scanning for sticky notifications from Google Maps



Lesson Learned
● Mapping out features by importance

○ implement important features first

○ don’t implement less important features, when time is running out

● Having one consistent data source
○ automatic and manual download work seamlessly together

● Kotlin is beautiful
○ clean syntax

○ more null safety than with Java



Open Issues
● improve UI

○ settings screen

○ map screen

● improve UX
○ interactions with overlay

○ interactions with map screen

● reduce the amount of data that is being automatically fetched

● add automatic deletion of old map data, that was not fetched manually


