
Package: Idea
• Shipment broker.
• Travelers from A to B and have extra space on 

them can utilize that to ship other user’s 
(documents, shipments) who also want to 
send those from A to B.



Application Terminology

• Journey: A journey form A to B that belongs to a user 
(who has published said journey) which also has a 
date that it should occur on.
• Origin and Destination: A and B in journey (locations).
• User: a user of the app and could be a traveler, someone 

who wants to ship something or both.



Context
• Location (If user permits the location (credit to Dominik 

Florencki)) :
• Trips will be shown in order relevant to the distance 

between the user’s position and the traveler who created 
the trip if location allowed. Otherwise, the trips are sorted 
relevant to creation date.

•Network Connection:
• Used to determine whether user is in online/offline mode.

• End-user filter rules:
• Filter trips data according to trip attributes



Filters
Application Data adaptation mechanism
• Filters are applied for journey queries upon end-user input 

context detection and parameters. Journeys that do not match 
parameters are filtered out. However, if that results in too few 
journeys (<=10) additional journeys are kept as suggestions and 
they’re determined based and relaxing the parameters

• Filter parameters:
• Date: Filter trips according specific trip date +- tolerance period to add suggestions.

• Origin – Destination: Return journeys going from A to B only (journeys going from 
nearby to A or ending close to B are candidates for suggestions)

• Available weight: Return journeys that can accommodate my large shipment.



Sorting journey queries
(Application Data adaption mechanism):
•After journeys are filtered, we have two sets of 

journeys; matching and suggestions. Those are 
returned in order of relevance according to:
• Matching journeys are always before suggestions.
• Date (duration between journey’s date and required date) <ascending>
• Origin and destination distance of journey to the required origin and 

destination <ascending>
• Distance between the journey user and the requesting user (usually relevant 

when there isn’t an origin parameters) <ascending>

• Any of the previous rules is skipped if the corresponding parameter 
was not supplied.



Offline usage
Data Transmission adaption mechanism
• Online mode:

• User gets real time updates (list is updated once a new trip is created)

• User can refresh list with list refresh gesture

• Offline mode:
• When user is offline, offline cache is used where it contains the result of the the 

original query (but shown according to currently applied filters), which can be 
further filtered offline.

• Publish queue so user can publish a journey offline (queue publish requests), 
obviously it would only be available to others when user is online again.

• A snack-bar shown to the user to indicate connection status.



Limiting power consumption

• GPS location is the only actual threat to battery drain. So to 
limit battery usage, location is only computed (if permitted) 
at key points:
• When user first starts the app
• After each time the app is minimized and returned to again.



Architecture (Tiers) and Technologies

Data Tier
Data Store

Django ORM to SQL
• Handling database 

queries in Python 
OO manner 
allowing for 
flexible logic 
development
• Community Driven

Logic Tier 
(Middleware)

Interfacing (and 
decoupling) end tiers

Django REST 
framework

• Efficiently handle 
and serialize 
Django data
• Community Driven

Presentation Tier

User Interface

React Native

Trips query: filters + location

(if permitted).

User data query:
• User contact info
• Trips history as a traveler

Cloud (DigitalOcean)

HTTP (REST API)

Online Mode
Real-time 
updates to 

trips
Web Socket

Offline Mode
Cache 
most 

recent 
update


