## The Next Industrial Revolution - The Semantic Web

Dr. Uwe Aßmann

Research Center for Integrational Software Engineering Keynote at Lund University, 2001



#### **Contents**

- The Semantic Web and why it qualifies for the next an industrial revolution
- The underlying technology
- The influence on the industrial markets
- The Swedish Semantic Web Initiative



#### Has the First Web Been an Industrial Revolution?





# What Makes Up an Industrial Revolution?

- New Technology
  - Simple enough
  - General enough
  - Piecemeal growth
  - Well, but that's not enough!!
- Standards
  - The Euro
  - Written language standards (cf Duden)
  - Ford's assembly line
  - ASCII code



The linear file of bytes (UNIX)



### The First Generation Web -An Industrial Revolution

#### **1990 HTML**

- electronic paper
- Technology: hypertext, SGML-like markup
- Standard: yes, de facto by the W<sub>3</sub>C
- But: not generic
- 1998 XML, the uniform document format
  - electronic forms
  - Technology: hyperlinks, SGML grammar-like approach
  - Standard: yes, de facto by the W<sub>3</sub>C
  - But: context free language



#### However... The Chomsky Hierarchy

RISE

|           | Natural Language?              |                                   |  |  |
|-----------|--------------------------------|-----------------------------------|--|--|
| Chomsky-0 | Generatable<br>languages       | Computable Problems               |  |  |
| Chomsky-1 | Context sensitive<br>languages | where context matters             |  |  |
|           |                                | constraint descriptions           |  |  |
|           |                                | context conditions                |  |  |
| <b>.</b>  | Context free<br>languages      | where context does not matter     |  |  |
| Chomsky-2 |                                | only structure, no context        |  |  |
|           |                                | only trees, no nets, no relations |  |  |
| Chomsky-3 | Regular<br>languages           | only lists, no trees 6            |  |  |

## **Example: The MOST Standard**

- A large German car manufacturer and his suppliers develop a new standard for car data: MOST
- Parts, parts, piece lists,...
- The megabytes of specifications are inconsistentWhat to do?
- Answer: use XML
  - Write a XML schema for MOST
  - Context free language CH-2
  - XML context free structure, typing, parsing help a lot





## However... How to Express Context Constraints?

- The right back wheel must has the same type as the left
- The right front wheel must have the same type as the left
- However, the front and back wheels may be different



## The Second Generation Web -The Next Industrial Revolution

2001 The Semantic Web

- Intelligent paper
- Technology: descriptions of static document semantic
  - context-sensitive languages CH-1
- Standards: RDF, RDFS, **DAML&OIL**, DAML-L
  - Upward compatible to XML
  - Applicable to all XML documents
  - Piecemeal growth





## The Second Generation Web -The Next Industrial Revolution

- For the first time: an executable standard on CH-1, context sensitive languages!
- Uniform treatment of all kinds of documents
  - Consistency checking: constraint checking of contextsensitive constraints
  - Searching: for content, not only for surface
  - Match making (comparisons)
    - using content, not only structure
  - Measuring quality
- All tasks will be done uniformly by DAML&OIL evaluators, built into standard browsers



#### **The Difference of Static Semantics**





## The Semantic Web is The Next Industrial Revolution

- All industrial sectors with administrative tasks will be automized
- Automatic process management
- Workflows of all kinds of documents for all kinds of businesses
  - Tax documents, Migration documents, ...
  - E-commerce: Searching, Comparing prices, Ordering, Billing, Web Services...
  - Customer Relationship Management
  - Dynamic Supply Chain Management
- Production Data, Workflow data



#### **The Process Management Market**



#### **Tax Declarations of the Future**







# It's Not the Technology,

It's the Standard





# The Technology

## **Exponential Growth: The Semantic Web**

- 1995-2000: James Hendler (Michigan U.) develops SHOE
  - Ontologies (i.e., static semantic descriptions) for HTML
- August 2000: DARPA DAML program
  - \$70 Mio are put to one language for ontologies (Darpa Agent Markup Language) for ontologies
  - J. Hendler chairs
- Winter 2001: OIL, the European competitor, is merged with DAML (DAML+OIL)
  - OIL is the leading European technology for ontologies
  - European projects Ontoknowledge, IBROW (Fensel)7



#### **Exponential Growth: The Semantic Web**

#### February 2001:

- T. Berners-Lee announces the Semantic Web initiative of the Web consortium
- May 2001: Berners-Lee, Lassila, Hendler announce the Semantic Web in Scientific American
- June 2001: The CEC opens a call for the Semantic Web, closed on Oct 17
- Aug 2001: W3C Semantic Web activity founded
- End of 2001: W3C Standardization Group starts



#### **How It Works**



RISE



### What is the Idea?

- Programming Language Person:
  - Normalize a compiler with XML
  - Extend its application to all kind of documents
- AI Guy:
  - Standardize a language for knowledge representation in the tradition of Semantic Nets, KL-ONE, Description Logic
  - Use XML syntax and apply it to XML
- Logic Programmer:
  - Strip off Prolog, type it
  - And use XML syntax



#### What is the Idea?

#### Linguist:

- Standardize a language for ontologies
- Document mark-up guy:
  - Distort SGML
- Database person:
- Strip Datalog and allow classes and inheritance
  UML freak:
  - Enrich UML with inheritance on relations
- Mechanical engineer:
  - Put STEP/Express into XML syntax



#### What is the Idea?



#### **Ontologies...**

- An ontology is a specification of a representational vocabulary for a shared domain of discourse [T. Gruber]
- An ontology is an explicit specification of a conceptualization
  - A body of formally represented knowledge is based on a *conceptualization*
- An *ontology* is a glossary with constraints
- An *ontology* is a description of static semantics in logic (DAML+OIL: description logic)
- An ontology is a UML structure diagram with inheritance on relations



## **The Layer of Semantic Languages**

| DAML-L RuleML | More powerful rules                                                    |
|---------------|------------------------------------------------------------------------|
| DAML-S        | Language for Web Services                                              |
| DAML+OIL      | Cardinality constraints<br>Inheritance on relations (simple inference) |
| RDFS          | Classes and inheritance<br>on nodes and relations                      |
| RDF           | Graphs (nodes, relations)<br>Binary data model 24                      |

RISE

## **Resource Description Format (RDF)**

- A "minimalistic" data format
- Triples over URIs
  - Subject, predicate, object
  - Object, property, value
  - Object, relations, object
- Binary databases, untyped graphs of URI
- Already realized in several databases
  - Conceptbase
  - Graph Databases
  - Sesame (OntoKnowledge)



#### **Resource Description Format (RDF)**







## **RDF Schema (RDFS)**

#### Adds

- Classes (RDF resources get a type)
- Inheritance between classes
- RDF properties (relations) get a type, i.e., a domain and range class
- Instances are typed graphs
- Corresponds to ER diagrams plus inheritance on classes (simple UML structure diagrams)



#### **RDF Schema (RDFS)**







## **RDF Schema (RDFS)**



#### **DAML+OIL**

#### Adds

- Inheritance on relations
- Cardinality constraints on domains and ranges of relations (similar to UML)
- Disjointness specifications for classes and relations
- Transitive relations
- Formally based on decidable description logic
- In contrast to UML, DAML+OIL can be evaluated by checker tools
- DAML+OIL ontologies can easily be made consistent



## **DAML+OIL vs Prolog**

- <class> Person </class>
- <relation> subPropertyOf S </relation>
- AND, OR on relations
- Cardinality constraints
- Value types are reused from XML Schema

- person(X).
- s(X,Y) := r(X,Y).
- s(X,Y) := r(X,Z), t(Z,Y).
- Komma Operator
- Arithmetic
- No typing

#### **DAML-L**:

<if> ... <then> <end> </rule>

Terms?

conclusion :- premise.



#### **DAML+OIL Classes**



WEB

## **DAML+OIL Relations**





#### DAML+OIL Restrictions on Relations







#### **DAML+OIL Inheritance on Relations**







## **Further Languages**

| Disjunctive l                                  |        |                                                  |      |
|------------------------------------------------|--------|--------------------------------------------------|------|
| Horn Clause Logic                              | DAML-L | Natural Seman<br>Monotone Abst<br>Interpretation | ract |
| Datalog<br>(Relational Algebra with recursion) |        | Edge Addition Systems<br>Distributive DFA        |      |
| (Relational Algebra Marreea                    | Remote |                                                  |      |
|                                                |        | Attribute<br>Grammars                            |      |
| Relational Al                                  | gebra  |                                                  |      |
|                                                |        | Attribute                                        | ŧ    |
|                                                |        | Gramma                                           | rs   |
| Description logics                             |        | DAML                                             |      |
| UML Str                                        | ucture |                                                  | 36   |





#### **Static Semantics vs....**







#### ... Dynamic Semantics







#### Future: Dyamic Semantics





## The Influence on the Industrial Markets

#### **The Process Management Market**



#### Submarkets of the Process Managment Sector PM

- PM-1 Ontology Languages
  - DAML+OIL, RuleML, ...
- PM-2 Ontology Development
  - Editors, component models
- PM-3 Ontology Tools
  - Knowledge mining, evaluators
- PM-4 Application Markets
  - e-commerce
  - Administrative processes
  - Production and business workflows

43

Evernet, home computing



## **Example Applications**

- Semantic Email
- Semantic Document Libraries
- Semantic Component Supermarkets
- Semantic Refactoring
- Semantic Domain Specific Languages
- Semantic WebServices
- Semantic WAP
- Dynamic Supply Chain Management
- Personalization
- Context Aware Services
- Semantic Knowledge Reengineering



## What People Say

#### H. Ait-Kaci (Life, Feature Logic)

- Databases (Datalog), AI (frame logic, problem-based reasoning), Programming languages, Logics (resolution, bottom-up), Constraint systems
- all will unite!
- Berners-Lee, Hendler, Lassila
  - The Semantic Web is.. an extension of the current one, in which information is given well-defined *meaning*, better enabling computers and people to work in cooperation.



#### **Berners-Lee, Hendler, Lassila**

- Traditional knowledge-representation systems typically have been *centralized*,
  - requiring everyone to share exactly the same definition of common concepts such as "parent" or "vehicle."
  - But central control is stifling, and increasing the size and scope of such a system rapidly becomes unmanageable.
- The challenge of the Semantic Web, therefore, is to provide
  - a language that expresses both *data* and *rules for reasoning* about the data and
- that allows rules from any existing knowledgerepresentation system to be exported onto the Web.



# What Sweden Should Do

# The Development in the Submarkets

- PM-1 Ontology Languages
  - Immediate Action Necessary
  - Window closes mid of 2002, when W3C committee will release the language
- PM-2 Ontology Development
  - Window closes 1-2 years later
- PM-3 Ontology Tools
  - 5-10 years competition
- PM-4 Application Markets
  - Be early, earn early





## Will It Suceed? The Horse Effect

#### ■ Failed:

- The 5<sup>th</sup> Generation Project
- The General Problem Solver (GPS)
- Expert Systems
- Suceeded
  - C (riding on UNIX)
  - Microsoft (riding on the PC)
  - Java (riding on the Web)
  - HTML (riding on the internet)
- The Semantic Web is riding on HTML



#### **Wakeling's Steamroller Law**

#### Be Part of the Steamroller

or

#### Part of the Road....



(David Wakeling)



#### The SWEB Swedish Semantic Web Initiative

- Semantic Web Awareness Actions
  - Dec 5: Prof. Norman Sadeh in Linköping
    - European Commission and CMU
  - How the Semantic Web will Change Business
- B2B, Dynamic Supply Chain Management
   Mailing List
- Strategic Projects in PM-1,2,3
- Application Projects in PM-4
  - Home communication
  - Workflow management





#### What You Can Do

#### Register in SWEB

- www.ida.liu.se/sweb
- Participation in European network OntoWeb
  - www.ontoweb.org
  - OntoWeb meets in Amsterdam again on Dec 6-8, 2001
- Prepare Yourself for the Revolution!







# What Would You Have Done If You Had Foreseen the First Web In 1990?



#### Ressources

- www.ida.liu.se/sweb The SWEB Initiative
- www.daml.org The DAML+OIL comittee
- www.w3c.org/2001/sw The Semantic Web activity of the W3C
- www.semanticweb.org A nice portal
- www.ontoweb.org The OntoWeb European Network
- www.easycomp.org (LIU's project on component composition for the Web)
- www.ontology.org A website for ontologies

