The 2nd Generation Web -Opportunities and Problems

Dr. Uwe Aßmann Research Center for Integrational Software Engineering (RISE) Swedish Semantic Web Initiative (SWEB) Linköpings Universitet

Contents

From 1st to 2nd Generation Web -The Semantic Web

- Use Cases of the Web
- What does "Semantic Web" mean?
- Opportunities and Problems
 - Standardized Document Processing Architecture
 - Standardized Vocabularies
 - Standardized Context Constraint Languages
- Outlook

The Semantic Web

is an extension of the current one,

in which information is given well-defined *meaning*, better enabling computers and people to work in cooperation.

T. Berners-Lee, J. Hendler, O. Lassila

The Problem with the 1st Generation Web

Only syntax

- Work is based on strings,
- not concepts
- Only context free structure
 - No context dependencies

Use Cases of the Web (1): Document Processing

- Car manufacturers and their suppliers need to exchange specifications of cars
- They also must pay taxes
- They need different software
- XML is not powerful enough for a uniform document processing architecture

Use Cases of the Web (2): Search

- "Find the home page of Uwe Assmann"
- "Find the home page of this computer scientist, Uwe - I forgot the surname who is working in Linköping"

Use Cases of the Web (3): Web Services

- "Bring a doctor here as fast as possible who knows about fever, diabetes, and heart insufficiency"
- Electronic Yellow Pages
 - Discovery of services
 - Execution of services
 - Composition
- CORBA has the same idea (Trader) but:
 - The CORBA trader works with keyword search
 - No preconditions, postconditions for services
 - Only simple services, no composition
- ... it failed...

Berners-Lee's Vision with the Semantic Web

- Make web content machine understandable
 - To provide more automation and more service
- Base the web on semantics

Problem: What Does Semantics Mean Here?

- An *interpretation function* from a syntactic to a semantic domain
 - Informally: an explanation what the syntax means
- Here: a function from XML syntax to an ontology
 - An explicit and shared specification of a conceptualization
 - A standardized taxonomy with constraints
- Contains:
 - Terms, partially ordered in a multiple inheritance hierarchy
 - Context constraints between the terms, specified with inference rules

What Does Semantics Mean Here?

However,...

- Often, syntactic domain and semantic domain are mixed
- Then, the semantic language degenerates to a constraint language with inheritance
 - I.e., markup is done in a modelling language similar to UML/OCL
 - But executed in a XML processor
 - And standardized
- And the "Semantic Web" degenerates to markups in a standardized modelling language

3 Basic Steps Forward in the Semantic Web

- Standardization of document processing architecture
- Standardization of vocabularies for the Web (ontologies)
- Standardization of context constraints languages
- The following shows their influence on the use cases

Standardized Document Processing Architecture

Standardized Document Processing Architecture

... Look Similar to **Tax Declarations** Tax **Authorities** "If you did not earn more **Tax Ontology Tax Schema** interest than 3000SEK, you 2002 2002 need not fill in the appendix" **Tax Form Editor** Ontology XML Checker Parser

This is a Huge Market

Technical Problem

- I want to process some documents, but it takes too long
 - Evaluation of large ontologies and large documents hard
 - Advanced compiler and generator techniques required

Stakeholder Problem

I want to share things with my friends in private

- Intranet vs Extranet is too simple
- No definition of "groups" on the web possible so far

...but society must be secure

- September 11 problem: crimes must be prevented
- P2P networks cannot be controlled at the moment

Standardized Vocabularies

Better Search with Standardized Vocabularies

Better Search on the Web

- Queries can utilize standardized ontologies
 - domain-independent ontologies such as Dublin Core (http://www.dublincore.org)
 - domain-specific ontologies
- the vocabularies
 - "Find the home page of Uwe Assmann"
- and their relations
 - "Find the home page of this computer scientist, Uwe
 I forgot the surname who is working in Linköping"
- www.dmoz.org, the free Yahoo-like portal, builds on RDF metadata already
- Search engines from European projects (OntoKnowledge, IBROW)

Stakeholder Problem

I want to communicate more efficiently

- I'd like to mark up my email
 - so that it can be classified better

but I'm too lazy to mark up...

- Mark up will slow down my writing
- Solution: Markup mining of documents
 - Specialized knowledge mining
 - Then interactive improvement

Stakeholder Problem

- Vendor X uses a slightly different ontology than vendor Y
 - The "Tower of Babel" problem does not vanish
 - Use public standard ontologies such as Dublin Core
 - Mapping and equivalences required to map synonyms in different ontologies onto each other
 - Advanced translation techniques required

Standardized Context Constraint Languages

Match-Making Web Services

Match-Making Services by Evaluating Constraints

Match-Making Services

Stakeholder Problem

I want to be found, but not to be compared...

- Shopping Agents are the enemies of every business
- They allow for comparison of prices
- Companies invent dirty tricks not to be comparable
 - Format of outputs in irregular forms
- No solution...

Stakeholder Problem

- I want to control who knows about me (information self-determination)
 - Abuse of information must be prevented (totalitarian governments, economic competitors)
 - The web is one-way: no notification if somebody observed you

Outlook

The most profound technologies are those that disappear.

They weave themselves into the fabric of everyday life until they are indistinguishable from it.

M. Weiser

Will the Semantic Web Be a Profound Technology?

- The "Semantic Web" extends the "running horse" XML
- and promises better end-user services by
 - Standardized document processing architecture
 - Standard vocabularies
 - Standard context constraint languages
- However:
 - The stakeholder, technical and security problems should not be underestimated
 - It will take a long time to make the technology "invisible"

Resources

- www.daml.org The DAML+OIL committee
- www.w3c.org/2001/sw The Semantic Web activity of the W3C
- www.semanticweb.org A nice portal
- www.ontology.org A website for ontologies
- www.dublincore.org The Dublin Core Ontology
- www.ontoweb.org The OntoWeb European Network
- www.easycomp.org (UKA and LIU's project on component composition for the Web)
- www.ibrow.org IBROW Project
- www.ontoknowledge.org (OIL), www.ontobroker.org, www.wonderweb.org
- www.ida.liu.se/sweb The Swedish Semantic Web Initiative (SWEB)

Bibliography

- T. Berners-Lee. Semantic Web Roadmap. Sept. 1998. See also
- http://www.w3.org/2000/Talks/1206-xml2k-tbl/Overview.html
- D. Fensel: Ontologies a Silver Bullet for Electronic Commerce. Springer, 2000
- S. A. McIlraith et. al. Semantic Web Services. IEEE Intelligent Systems, March 2001
- N. Sadeh, The Semantic Web Challenges, Opportunities, and Challenges, Talk OntoWeb Kickoff, Crete, June 2001

The End

Several Markup Languages can be Referenced

Web Services and Standardization

Requirement:

- Uniform document processing architecture
- Vocabularies for Yellow Pages are standardized
 - domain-independent and domain-specific Vocabularies
- Constraint languages are standardized
 Goes beyond CORBA services

Standardized Context Constraint Languages for Web Services

Markup of

- User and group preferences
- Web services (advertisements)
 - Prerequisites, consequences
- Broker processes, partial compositions of web services
- Evaluation combines all markups
- And infers which services are executed when
- Example: DAML-S, a set of ontologies for Web Services
 - www.daml.org/services

Stakeholder Problem

I want web services, but do not want to be traced...

- I want anonymous money
- I don't want to be traced to my location
- I want anonymous web services

One of the Languages: DAML&OIL

Language Features

- Class hierarchy for terms
- Inheritance on relations
- Simple inference with subproperties and operators Conjunction, Disjunction, Difference
- Cardinality constraints on domains and ranges of relations (similar to UML)
- Disjointness specifications for classes and relations
- Transitive relations
- Based on decidable description logic
- DAML&OIL can be evaluated by checker tools