
Rapid Ontology
Development (RODE)
With PIKE

Prof. Uwe Assmann
Martin Nilsson, Leif Stensson, Marcus

Comstedt
Research Center for Integrational

Software Engineering (RISE)
PELAB, IDA

3

The Future Semantic Web

Searching Checking of consistency

Common understanding
(interoperability)

4

Standardized Document
Processing Architecture

Browser
Processor

Document

XML
Schema

OWL
Ontology

XML
Parser

Ontology
Checker

Semantic
Markup

5

Car
Manufacturer

Browser
Processor

CAR

Specifications

CAR

Schema

CAR

Ontology

XML

Parser

Ontology

Checker

Car Data Specifications...

6

Tax
Authorities

Editor

Tax Form

Tax Schema Tax Ontology

XML

Parser

Ontology

Checker

"If you did not earn more
interest than 3000SEK, you
need not fill in the
appendix"

... Look Similar to
 Tax Declarations

7

The Problems of the Future
Semantic Web

■ Ontology-based development - how?
■ The Semantic Web has rather static ontologies

(models), but in software engineering, everything
flows

■ Models change
■ Models are developed out of each other in different

abstraction levels

■ Slow document checking
■ How to load a document (OWL instance) of 200MB

into Prolog?
■ Conversion time
■ Memory consumption
■ Speed of checking

8

The Solutions for the Future
Semantic Web

■ Rapid Ontology Development (RODE)
■ Brigde OWL ontologies with a RAD language (rapid

ontology engineering environment with Pike)
■ Demonstrator RODE

■ Development environment with fast in-line
ontology checking
■ Translate an OWL ontology into the classes as check

code
■ Demonstrator SWEDE environment:

9

Semantic Web Applications

Uniform
Composition

(XML-Compost)

Semantic Web Standards (RDF, RSS, OWL, DAML)

Rapid
Ontology

Development
and Evolution

(RODE)

Semantic Web Applications

Fast
Ontology
Checking
(SWEDE)

Rapid Ontology Development
(RODE)

11

Model-Driven Architecture
(MDA)

■ MDA (http://www.OMG.org/mda) attracts engineers
■ Split the models for systems software into platform-

independent and platform specific models (PIM vs.
PSM).
■ The PIM focus on the logical architecture
■ The PSM adds platform specific details and timing

constraints.

■ Promises to simplify the designs
■ Derive implementation models from design models

(semi-) automatically.

■ However, tool support for MDA is missing
■ OMG expects MDA to be their major activity area for

the next 10 years

12

MDA

Business model

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Code

Model mappings

13

MDA for Ontology
Development

Business model

Platform Independent Ontology (PIO)

Platform Specific Ontology (PSO)

Application

14

Rapid Ontology Development

■ Problem: Several types of ontologies will be needed
in the development process

■ Abstract ontologies, platform independent
■ Detailed ontologies, platform specific
■ Or: design ontologies vs implementation ontologies
■ Ontology engineering will be a discipline

15

RODE Example
A Platform-Independent Ontology

Figure
(Figure Hierarchy)

Subject
(Figure Observer)

Predecessor
(Figure Chain)

Client
(Graphics)

Child
(Figure Hierarchy)

Subject
(Int. Fig. Observer)

Graphics
(Graphics)

Parent
(Figure Hierarchy)

Observer
(Int. Fig. Observer)

1..*

0..*
Observer
(Figure Observer)

Successor
(Figure Chain)

Figure

CompositeFigure

Root
(FigureHierarchy)

RootFigure

RootClient
(FigureHierarchy)

Ontology

Client
(Figure Hierarchy)

16

A Derived Application-Oriented
Ontology

■ For class diagram
editors

Figure
(Figure Hierarchy)

Subject
(Figure Observer)

Predecessor
(Figure Chain)

Client
(Graphics)

Child
(Figure Hierarchy)

Subject
(Int. Fig. Observer)

Graphics
(Graphics)

Parent
(Figure Hierarchy)

Observer
(Int. Fig. Observer)

1..*

0..*
Observer
(Figure Observer)

Successor
(Figure Chain)

Figure

CompositeFigure

Client
(ClassDiagram)

Root
(FigureHierarchy)

RootFigure

Figure
(ClassFigure)

RootClient
(FigureHierarchy)

Ontology B

Client
(Figure Hierarchy)

ClassDiagram
(ClassDiagram)

ClassDiagram

Client
(ClassFigure)

17

A Derived Ontology for UML
Editors

Figure
(Figure Hierarchy)

Subject
(Figure Observer)

Predecessor
(Figure Chain)

Client
(Graphics)

Child
(Figure Hierarchy)

Subject
(Int. Fig. Observer)

Graphics
(Graphics)

Parent
(Figure Hierarchy)

Observer
(Int. Fig. Observer)

1..*

0..*
Observer
(Figure Observer)

Successor
(Figure Chain)

Figure

CompositeFigure

Figure
(RectangleFigure)

RectangleFigure

Graphics

Client
(ClassDiagram)

Root
(FigureHierarchy)

RootFigure

Figure
(ClassFigure)

ClassFigure

RootClient
(FigureHierarchy)

Ontology C
UMLEditor

Tool
(Tool)

Tool

Tool
(Tool)

RectangleTool

Client
(RectangleFigure)

Client
(Figure Hierarchy)

ClassDiagram
(ClassDiagram)

ClassDiagram

Client
(ClassFigure)

Client
(Figure Hierarchy)

18

What Are Platforms In MDA?

■ Abstract machines
■ Libraries, such as JDK, .NET

■ Implementation languages
■ Java, Eiffel, C#

■ Component models
■ CORBA, etc.

■ Set of predefined types (vocabulary)
■ Ontology of a domain (e.g., medicine)
■ Constraints

■ Time
■ Memory
■ Energy

■ Platforms are described by UML profiles

19

What Are UML Profiles in
MDA?

■ UML dialect of a platform
■ With new stereotypes and tagged values
■ With metamodel

■ Domain specific languages
■ With own vocabulary
■ Every entry in metamodel is a term

■ Examples
■ EDOC Enterprise Distributed Objects Computing
■ Middleware: Corba, .NET, EJB
■ Embedded and real time systems: time, performance,

schedulability

20

Profiles Are...

■ Ontologies in UML
■ If domain is large enough
■ If there are enough users

■ Also profiles should be represented in OWL

21

Rapid Ontology Development
and Evolution (RODE)

■ Required for Rapid Ontology Development is a powerful
RAD language for ontologies

■ Results in Rapid Ontology Development and Evolution,
(RODE)

■ Idea: evolve OWL as Pike data
■ Based on Pike Relation module
■ RSS syndication and RDF processing works
■ OWL soon (end of the year). Then, semantic searching will

be possible
■ Full RODE next year

22

The RODE

Pike (Classes, Relations)

OWL

Application
Searching, Ontology Evolution,
Consistency Checking

OWL

OWL
instance
(document)

OWL
instance
(document)

23

MDAFA Conference

■ June 2004

24

Why Pike is Suited

■ Multiple inheritance
■ Mixin inheritance
■ Powerful data types
■ Iteration concepts

■ Multiple inheritance
■ Open definitions
■ Global Relations with

inheritance
■ Instance lists

PIKE OWL

25

RODE: Semantic Data on the
Web (RSS Syndication)

■ HTML contain basic documents
■ RSS helps making content available
■ DAML provides for describing classifications
■ RDF provides for describing relations

26

Syndication

■ Data provided by different content provides
■ Data used either directly by user, or by

intermediate syndication servers that provide the
user with the data.

27

RODE and RSS: Really Simple
Syndication

■ RSS is an RDF format
■ RSS supports Dublin Core metadata markup
■ RODE can read, modify and write RSS data
■ Users can search on RSS

■ RSS data is a standard data structure, that can be
manipulated symbolically in Pike

■ Search and iteration, split, and manipulation is very
simple

■ RODE enables simple evolution of RSS data

28

RODE Components

RSS Object Tree

RDF Object Tree

XML Object Tree

XML Parser

RDFS object tree

OWL object tree

Web files

OWL on fileOWL on file

29

RODE - XML Object Tree

■ Offers DOM interface
■ Capable of all XSLT transforms

30

RODE - RDF Object Tree

■ Reads and writes XML, 3-tuple and N-triple
serialization.

> object r = Standards.RDF();
> r->parse_xml(#"<RDF
 xmlns='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 xmlns:s='http://description.org/schema/'>
 <Description about='http://www.w3.org/Home/Lassila'
 s:Creator='Ora Lassila' /></RDF>");
(1) Result: Standards.RDF(1)
> r->get_n_triples();
(2) Result: "<http://www.w3.org/Home/Lassila>

<http://description.org/schema/Creator> \"Ora Lassila\" .\n“

31

RODE - RDF Object Tree

■ Interactive object manipulation.

> object r = Standards.RDF();
> object unnamed_resource = r->Resource();
> r->add_statement(“http://a.com/”, “http://b.com/”,

unnamed_resource);
(1) Result: Standards.RDF(1);
> r->find_statements(0,0,unnamed_resource);
(5) Result: ({ /* 1 element */
 ({ /* 3 elements */
 RDF.URIResource(<http://a.com/>),
 RDF.URIResource(<http://b.com/>),
 RDF.Resource(_:Resource1)
 })
 })

32

RODE - RDF Object Tree

■ Supports set operations between RDF
domains.

> object a=Standards.RDF();

> object b=Standards.RDF();

> a->parse_xml(Stdio.read_file
(“example_a.rdf"));

(1) Result: Standards.RDF(43)
> b->parse_xml(Stdio.read_file

(“example_b.rdf"));
(2) Result: Standards.RDF(48)
> a|b;
(3) Result: Standards.RDF(86)

33

RODE - RDF Object Tree

■ Supports set operations between RDF
domains.

C E

A

B
+

C

D

E

A

B
C D

A

B =

34

ROD - RSS Object Tree

■ Simple RDF application
■ Already deployed on several sites
■ Real World data

■ e.g., from Runeberg server

Fast Ontology Checking -
The SWEDE Framework

36

Ontology Development
Environment (SWEDE)

■ SWEDE (Semantic Web Development Environment)
has two parts
■ Development of ontologies in an interactive way with

UML tool and constraint editor
■ Checking of ontologies

■ Checking of documents and architectures vs a
composition ontology

■ Generation of in-line checkers for applications
■ Faster than usual

37

Semantic Web Development
Environment – SWEDE Goals

■ Access ontologies as if they were standard UML
models

■ UML editing of ontologies
■ Reuse the UML standard for creating ontologies

■ Ontology processing
■ Fast checking of documents against ontologies
■ Search on ontology-based data structures
■ Inference engine for constraint checking

■ OWL2Optimix is a subtask of SWEDE
■ Goal: get a fast evaluator for OWL
■ Translate to Java and Optimix, one of the advanced

compiler generation tools for Datalog

38

SWEDE-OWL2Optimix
Architecture

39

PIKE Backend for Optimix

■ To do..

Applications

41

Application: Semantic Web for
Product Development

■ Semantic Web for interoperability of tools in
product development

■ Industrial Supporters (case studies)
■ IFS (configuration management)
■ FOI (military tool interoperability)
■ FocalPoint

■ Use RODE for developing ontologies
■ And SWEDE to check them

42

Application: Uniform
Composition

■ Uniform composition means to compose software
and documents uniformly

■ COMPOST 2.0 will be the first system
■ 1.0 was for Java only

■ Changing
■ parsers
■ semantic descriptions

■ Reusing
■ transformations
■ compositions
■ architecture

43

Ontology Controlled Uniform
Composition

■ Architectures (both for software and XML
documents) can be described uniformly by
compositions
■ And checked by a composition ontology

■ Control the composition of components by the
constraints of a composition ontology

■ The ontology is split up over layers of the
composition framework

44

Realizing Ontology Controlled Composition
with the Layered Architecture of the
COMPOST System

Java

Fragment

Boxes

X-HTML

Fragment

Boxes

Fragment

Components

Run Time

Components

Components

(Boxes) (Core)

UNICOMP

Components

....

Refactorings

Abstract

Composition

Layer

Interface layer

for exchange

and checking

Language

specific

Layer

Time

specific

Layer

JDRUMS

Components

X-HTML

Ontology

UNICOMP

Ontology

JDRUMS

Ontology
Java

Semantics

Components

(Complex)

Abstract

Ontology

Abstract

Ontology

Java

Fragment

Values

X-HTML

Fragment

Values

JDRUMS

Component

Values

45

Future Composition Framework
with More Layers

■ Every concern makes up a layer
■ Composition Framework Structure
■ Is a Riehle/Züllinghoven framework with layers
■ Every complex object crosscuts all layers and has a

core object, role object on every layer

■ On every level, there are consistency rules
■ They can be baked into the corresponding role

objects

■ Division of the ontologies according to the layers
■ Layer-local consistency rules
■ Global consistency rules

46

Concern Levels and Framework
Layers

■ Independent (core layer)
■ Composition-time dependent (time layer)

■ forall compositions: same time
■ Staged composition (staging layer): is the result of a

composition another composition?

■ Language dependent: (component language layer)
■ e.g., forall component languages: same language
■ Mixed systems: language compatibility rules

47

Concern Levels and Framework
Layers (ctd)

■ Component and HookModel dependent (component
model layer)
■ There can be many component models per

component language

■ Architectural style dependent (architectural style
layer)

■ Application family dependent (application family
layer)

■ Application dependent (application layer)
■ [User layer (personalization layer)]

48

Future Layers and CrossCuts

Independent Component Layer

Composition Time Layer

Component Language Layer

Component Model Layer

Architectural Style Layer

Application Family Layer

Application Layer

User Layer

C
o
m

p
o
n

e
n

t

C
o
m

p
o
sitio

n
P
o
in

t

C
o
m

p
o
se

r

M
a
tch

e
r

C
o
m

p
o
sitio

n
S

y
ste

m

O
n

to
lo

g
y
 b

a
se

d
 ch

e
cke

r

The End

50

Translation of Ontologies to RML
(ORML)

■ [Adrian Pop, CUGS student]
■ Pelab's RML is one of the advanced compiler

generation tools
■ generating static and dynamic semantics
■ Fast
■ Debugger completed recently

■ ORML (DAML2RML) is a subtask of XWizard
■ Goal: get a fast evaluator for DAML&OIL
■ Develop a ontology debugger

■ Connection of RuleML must be clearified

