
Automatic Roundtrip
Engineering

Uwe Aßmann

© RISE Center at Linköpings Universitet

Why Compilers Will Live Forever

And why you should prepare to get more funding
in the future....

3

Code

1) Modern Case Tools Support
Roundtrip Engineering

V1 V2

create

destroy

Editor Editor

4

IDE Adds RE-Preprocessing To
Compilation

GraphicView
II

Code

Binary

GraphicView
I

Compilation

IDE transformation IDE transformation

How to Systematize?
How to implement it not

with hacking?
How to add more views

without problems?
How to formalize the

problem?

5

Roundtrip States and Events

create

destroy

Stable View changed

create, destroy

update modelupdate all
views

Model updated

6

2) The Batch System Challenge

7

How to Unify TeX and Emacs?

How to unify batch systems with
Incremental processing

Editing the results and tracing it back to the input
How can we edit the bitmap, tracing it back to TeX?

8

3) How to Debug AOP Systems?

CoreCore

Weaved
System

Weaved
System

AspectAspect

Domain Transformations and
Roundtrip Engineering

10

Roundtrip Engineering (RE) in
Mathematics and Algorithmics

Mathematics and Algorithmics
know the problem solving
principle of domain
transformations (roundtrip)

If a problem is too hard to solve
in a domain D,
transfer it into another domain D'

solve it with a simpler algorithm

transform it back with the inverse
domain transformation

Examples: Fourier, Wavelet,
Laplace transformation

We call D the model and D' the
view

Domain BDomain B

Domain ADomain A

f f-1 The Roundtrip

View

Model

11

Target LanguageTarget Language

Source LanguageSource Language

Compiler Decompiler

Domain Transformations in Compilers

View

Model

12

Internal
Representation

Internal
Representation

SourceSource

Parser PrettyPrinter

 Refactoring Tools (e.g.,
sf.recoder.net)

View

Model

13

Standard Text FormStandard Text Form

Html SourceHtml Source

Text printer Wiki parser

Wikis

View

Model

14

Other Examples

Wikis are domain transformations between html and text
Special markup recognizes semantics, i.e., links

XML and NiceXML
RDF and N3

Automatic Roundtrip Engineering

16

Automatic Roundtrip Engineering
(ARE)

If the inverse domain transformation can be automatically
computed, we speak of Automatic Roundtrip Engineering
Inverse domain transformation is for free

Domain BDomain B

Domain ADomain A

f f -1

17

ARE - The Definition

Let A, B be two domains
f:A->B a domain transformation from a function space F
i:F->F a functional that calculates an inverse, the inverse

generator

R = (A, B, f, i) is an automatic roundtrip system (ARE)

(f, i(f)) is a Galois connection, in which the inverse can be computed
automatically

18

What is ARE?

An architectural style
Working together on an artefact in different views

Only half of the transformations need to be specified
A design pattern

Resembling MVC (model view controller), but with one view only
An algorithm class

A subclass of domain transformations

19

XMLXML

PDFPDF

Transformational
Grammar Inverter

Adobe XPDF: PDF <-> XML

View

Model

Transformational Grammar should be invertible

20

Domain BDomain B

Domain ADomain A

ff -1

Domain CDomain C

gg -1

ARE with Multiple Domain
Transformations

21

Example Mozilla Composer

The mozilla composer is an html editor with 1 model and 2 views
the views raw html, edit, edit-with-tags can be editied, the standard rendered

view is view-only

editoreditor

raw
html

raw
html

ff -1

editor
with tags

editor
with tags

gg -1

standard
rendered
view

standard
rendered
view

hh -1

Model-View based Automatic
Roundtrip Engineering (MVARE)

23

MVARE with Projections and
Integrations

View (IEEE):
“A form of abstraction achieved using a selected set of architectural

concepts and structuring rules, to focus on particular concerns within a
system”

A Model-View ARE (MVARE) is an ARE with multiple domain
transformations that
decompose a domain (projections),

domain transformationst that project to a simpler domain with less
information

i.e., from inverting one domain transformation not the entire model can
be recompouted

And their inverses, that integrate the domains again (integrations)

24

Domain ADomain A

ff -1 gg -1

MVARE with Projections

Domain CDomain CDomain B Domain B

A view can be
substantially simpler
than the model

There may be solution
algorithms in a view
which are much more
efficient than any
algorithm on the model

The projections
decompose the model
into simpler items

While the integrations
compose the simpler
solutions into a main
solution

25

MVARE – The Definition

Let A, B1, .., Bn be n+1 domains
f[j]:A->Bj projecting domain transformations from a function space F
i:F->F a functional that calculates an inverse, the inverse

generator

Then, R = (A, B, f[1],..,f[n], i) is an model view automatic
roundtrip system (MVARE)

A is called the model
B1,..,Bn are called the views

26

MVARE Applies Divide and Conquer

A view can be substantially simpler than the model
There may be solution algorithms in a view

which are much more efficient than any algorithm on the model
The domain transformations decompose the model into simpler

items
While the inverse domain transformations compose the simpler solutions into

a main solution

27

MVARE Examples

Executable UML Tools
Together

SGML (separation of structure and layout)
CODEX is an MVARE with DPO graph rewriting and memoization

of complete redexes [Larsson 2002]

28

Domain BDomain B

Domain ADomain A

ff-1

Domain DDomain D

Domain CDomain C

fF-1

f
f-1

A

B
B

A

C C

ARE Chains (CARE)

Simple ARE problems can be
stacked onto each other
Either in list form

Or in tree (cactus) form
Bridge gaps between domains

that are semantically very
much distinct

29

docbook
svg
gif

docbook
svg
gif

docbook
svg
mathml

docbook
svg
mathml

html
gif

html
gif

Example: XSLT Chains in Content
Management Systems

svg2gif

mathml2gif

docbook2html

docboo
k

gif

30

BytecodeBytecode

ASTAST

LIRLIR

Almost an Example: Compiler IRs

Bytecode
reader

Bytecode
generator

Code generator

SSA

31

Domain BDomain B

Domain ADomain A

Domain CDomain C

Cactus ARE

Domain DDomain D Domain EDomain E Domain FDomain F Domain GDomain G

32

Extensible Languages

Should be ARE, but are not!
In which form should an extensible language program be

maintained?
In super language: unreadable

In base language: better readable?? but not as concise
ARE allows to switch, also when the people have left the company

33

UMLUML

UML-RTUML-RT

CC

EiffelEiffel

Domain Specific Languages with
Extensible Languages

Mathml2gif

34

IP base languageIP base language

IP abstract
language

IP abstract
language

CC

Intensional Programming of Microsoft

Is a form of extensible language for DSL
Should be inveritble

Bidirectional AOP

36

Domain B1
(Core)

Domain B1
(Core)

Domain A
(Weaved
System)

Domain A
(Weaved
System)

Domain B2
(Aspect)

Domain B2
(Aspect)

AOP versus MVARE

MVARE provides independent integrations and projections
In AOP, integrations depend on each other

37

AOP is different

Views are independent of each other
Aspects depend on the core
Aspects lack independence

The integrators are not independent of each other

Domain BDomain B
Domain B1
(Core)

Domain B1
(Core)

Domain A
(Weaved
System)

Domain A
(Weaved
System)

Domain B2
(Aspect)

Domain B2
(Aspect)

Weaver

38

Beaving Systems
(Bidirectional AOP)

A bidirectional aspect systems are special cases of MVARE
The weaver is an integrator

A deweaver is a projector

Usually, deweavers are missing from AOP, so it's not a roundtrip engineering
method

Such a system is called a bidirectional weaver (beaver)

39

Domain BDomain B
Domain B1
(Core)

Domain B1
(Core)

Domain A
(Weaved
System)

Domain A
(Weaved
System)

d-1

Domain B2
(Aspect)

Domain B2
(Aspect)

w=d

Bidirectional Weaving (Beaving)

Bidirectional AOP is an ARE but not an MVARE
the projections and integrations are coupled

MVARE requires independent integrators (and independent aspects)

40

Advantages of Beaving

Debugging easy compared to forward AOP
Tracability

View can be switched as desired
Maintenance easy

System can be maintained in split or integrated form
Understanding better

View can be switched as desired

41

ARE as Instance of
Divide and Conquer

Simple ARE does not divide, but conquers by domain
transformation

MVARE is Divide and Conquer for dimensional decomposition
(separation of concerns)

Beaving is full AOP
Debugging, maintenance, understanding

Incremental Processing

43

Incremental Evaluation with Spatially
Isomorpic ARE

The transformations take time
May be they can be done incrementally?

in particular in interactive applications
If domains can be partitioned into subdomains

isomorphic to each other

44

Domain BDomain B

Domain ADomain A

ff -1

Domain CDomain C

gg -1

Spatial Isomorphic ARE

45

GraphicsGraphics

TeX
IR

TeX
IR

TeX formatter

TeX Should Be ARE

TeX Decompiler
(does not exist)

TeX
Source

TeX
Source

DviDvi

46

GraphicsGraphics

TeX
Source

TeX
Source

TeX as Almost
Spatial Isomorphic ARE

Chapter
borders

Page
borders,
floating

47

TeX Should Be ARE!

TeX formatter is not quite an ARE, but should be:
Incrementality:

An incremental TeX needs only to reformat the current chapter

Chapters provide an almost isomorphic partitioning of the model and the
view

Edit the bitmap:

Deformatter should exist

(TeX is too powerful due to its macro system)
If TeX was an ARE system, bitmaps could be edited and still be

translated into the TeX source (TeX-Emacs unification)
and vice versa

It would be a Chain-ARE, with several intermediate steps

48

ExecutableExecutable

Source modulesSource modules

Incremental
Linker

Separate Compilation as Sequential
SPARE

Binary object
f iles

Module
borders

Code
segments

Binary object modulesBinary object modules

Compiler

49

Separate Compilation as a Chain-
SPARE

Separate Compilation divides the program into modules (regions)
can be compiled separately to an object module

Smart Recompilation on procedure level uses even finer grained regions,
procedures

Also the linker can be incremental
and hook in a newly compiled binary module into an executable

Standard, non-incremental linkers do not exploit the SPARE feature

50

SPARE vs MVARE

In a SPARE, usually all transformations are identical
If we use a different transformation for every partition, we get a

MVARE

51

AC-decomposable SPARE

An AC-decomposable SPARE is a SPARE that works with a
partially ordered partition of the source domain
Partitions are not independent

If the transformations are different, it is called an AC-decomposable
MVARE

Partitions depend on previous partitions in the partial order
Whenever a transformation has to be performed, all previous

partitions have to be transformed

52

Domain BDomain B

Domain ADomain A

ff -1

Domain CDomain C

gg -1

AC-.SPARE

53

AC-SPARE

Still decomposable, i.e., incremental
But only incremental in the depth of the partially ordered relation!
OAGs are powerful special forms of AC relations

Ordering means that the partial dependencies of the attribute relations can
be ordered statically

AC-decompability can mean that OAG algorithms are employed
OAG-HAGs are AC-SPAREs

Integrational Software
Engineering

 And why you will want to use it..

55

Automatic Roundtrip Engineering in
an Environment for Integrational SE

Requirements aspectRequirements aspect

Testing aspectTesting aspect

Core
(Algorithm)

Core
(Algorithm)

OpOp

Consistent
roundtrip

editing of views,
adding of new

views

OpOp

OpOp

OpOp

OpOp

OpOp
OpOp

Testing

Architecture aspectArchitecture aspect

Architecture

56

Example: Scope Trees

Scope trees are structured containers for code and its
attributes
Package tree of a program (static structuring)

Scope tree of a program (static structuring)

PkgPkg

ClassClass

MethodMethod

ClassClass

MethodMethod MethodMethod
MethodMethod

57

Scope Trees with Attributes

Attributes
Comments (package, class,

method, parameter)

Code

Visibility PkgPkg

ClassClass

MethodMethod

ClassClass

MethodMethod
MethodMethod

CommentsComments

CommentsComments

CommentsComments

CodeCode

CodeCode

58

Projecting A Scope Tree For
Comment Attribute

PkgPkg

ClassClass

MethodMethod

ClassClass

MethodMethod
MethodMethod

CommentsComments

CommentsComments

CommentsComments

59

Projecting A Scope Tree For
Code Attribute

PkgPkg

ClassClass

MethodMethod

ClassClass

MethodMethod
MethodMethod

CodeCode

CodeCode

60

JavaDoc Can Be An ARE
Application

Html with comments

Projections

Domain Transformation

61

Example JavaDoc

JavaDoc is a projection from a system of structural tree, code
and commments
To tree with comments

JavaDoc can be modeled with a generated inverse DPO
graph rewrite system
Names of packages, classes, methods are used as identification

tags

The system is invertible

62

Realization With Extended DPO

DPO (double pushout) graph rewriting has inverses
DPO has restrictions when nodes are deleted

Cannot correct “hidden” edges
Extended DPO with memoization of redexes

Introduction of “ghost” objects

Deleted nodes are memorized, until integration regenerates model
[Assmann/Ludwig GCSE 99]
[Larsson/Burbeck 02 master's thesis]
[Larsson/Burbeck 03 MDAFA]

63

A DPO System For Views on
Comments and Code

1111 1111

11
1111 11

P1

I1

P2

I2

64

Realization ctd.

ALL methods can be used that produce invertible transformations
Invertible TRS
Invertible Forward AGs
More....

65

Benefits of the
ARE Architectural Style

Simple ARE does not divide, but wins by domain transformation
MVARE is Divide and Conquer for dimensional decomposition

(separation of concerns)
The inverse generators make it simpler

Chain-ARE is for minimizing the semantic gaps
SPARE additionally divide into spatial regions, to make it

incremental (spatial refinement)
Bi-AOP is better AOP

Debugging, maintenance, understanding

MVARE is almost AOP, but simpler

66

Why You Will Earn A Lot of Money

ARE styles are based on
Compiler technology

Rewrite system technology

Formal transformation approaches

Domain transformations and D&C are THE major problem solving
methods of mankind

Compilers are the only available tools for domain transformations
and D&C

Hence.....

Compilers Will Live Forever

68

The End

Software Composition (SC 2003)
MDAFA 2003 Twente University
MDAFA 2004 Linköping University
uweas@ida.liu.se
www.easycomp.org EASYCOMP project on software

composition

mailto:uweas@ida.liu.se
http://www.easycomp.org/

