
U. Aßmann, TU Dresden

CS Department in Dresden

U. Aßmann, TU Dresden

OUTPUT Demo Day of the Department

Collaboration-Based
Language Composition

or: How to model a newspaper-reading
sausage-buying grandfather

Uwe Aßmann
Christian Wende
Technische Universität Dresden
Chair of Software Engineering

 U. Aßmann, TU Dresden

Fiction or Reality?!

use Modula.2.0 for base

use C++.2040 for parameterization and initialization

use SQL.5.0 for data-fetch

use BETA for slots

template class S, DB {

 IMPLEMENTATION MODULE WebServer<S>;

 PROCEDURE <<..>> END;

 BEGIN

 S: servletGenerator = DB.init;

 R: relation = select all from DB
 where Person == “Assmann”;

 END

}

 5U. Aßmann, TU Dresden

Composition of Languages

Problem:
 Composition of two languages

 Extension of a base language

 Specification of a crosscut in the semantics
 Hand-invasive edits

Traditionally done with declarative specifications
 Composition of Attribute grammars

 ELI, fnc-2, LISA, Silver, JastAdd

 Composition of Natural Semantics
 Typol, RML

 Logic
 Datalog, OWL

Goal: Simplicity, Automation

Let's look at modern O-O!

 6U. Aßmann, TU Dresden

A Riddle..

Man Woman

Person

 7U. Aßmann, TU Dresden

Another Riddle..

Mother Father

Person

New Developments in Object-Oriented
Modeling

 9U. Aßmann, TU Dresden

Collaboration-Based Modeling
(Role Modeling)

Databases [Bachmann]

Factorization [Steimann]

Research in Design Patterns [Reenskaug, Riehle/Gross]

:Person :Person

:Father :Child

<<plays-a>> <<plays-a>>

:Person :Person:Father :Child

 10U. Aßmann, TU Dresden

What are Roles?

A role is a dynamic view onto
an object
 Roles are played by the objects

(the object is the player of the
role)

 A partial object

Roles are tied to collaborations
 Do not exist standalone, depend

on a partner

:Employee

:Father

:Cyclist

:Customer

:TaxPayer

:Swede

:Person

 11U. Aßmann, TU Dresden

What are Roles?

Roles are services of an object in a context
 Roles can be connected to each other

 A role has an interface

Roles form role models, capturing an area of concern
[Reenskaug]
 Role models are collaborative aspects

:Employee

:Father

:Cyclist

:Customer

:TaxPayer

:Swede

:Person

:Employer

:Child

:CarDriver

:Person

 12U. Aßmann, TU Dresden

What are Role Types?

Role types (abilities) are
 service types

 dynamic types

 collaborative types

Problem:
 The word “role” is also used on the

class level, i.e., for a “role type”

Employee

Father

Cyclist

Customer

TaxPayer

Swede

Person

 13U. Aßmann, TU Dresden

Collaboration Schemas (Role-Type
Model)

Collaboration schema (role type model, ability model):

 Set of object collaborations abstracted by a set of role types

 A constraint specification for classes and object collaborations

Ex: A figure can play many roles in different collaboration schemas

Figure
(FigureHierarchy)

Subject
(FigureObserver)

Predecessor
(FigureChain)

Client
(Graphics)

Child
(FigureHierarchy)

Subject
(Int.Fig.Observer)

Server
(Graphics)

Parent
(FigureHierarchy)

Observer
(Int.Fig.Observer)

Client
(FigureHierarchy)

Successor
(FigureChain)

Figure

X3D

Observer
(FigureObserver)

GUI

RootFigure

 14U. Aßmann, TU Dresden

Role- and Role-Type Models Underly
Many Gray-Box Component Models

Views
 Hyperspace (MDSOC)

Collaborative Aspects
 ObjectTeams

 CaesarJ

Template-based languages
 BETA, Yggdrasil

 Invasive Software Composition

The Steimann Factorization

Splitting a type into a tuple of natural and
founded parts

 16U. Aßmann, TU Dresden

Rigid Types [Guarini]

Example:
 Book is a rigid type

 Reader is a non-rigid type

 Reader can stop reading, but Book stays Book

Rigid types are tied to the identity of objects
 A non-rigid type is a dynamic type that is indicating a state of the object

If an object that has a rigid type, it cannot stop being of the type
without loosing its identity

If an object that has a rigid type, it cannot stop being of the type
without loosing its identity

 17U. Aßmann, TU Dresden

Founded and Natural Types

A founded type (relative type) is a type if an object of the type
is always in collaboration (association) with another object.

A role type is a founded and non-rigid type.

Natural types are non-founded and semantically rigid.

Role types are in collaboration and if the object does no longer play the role type,
it does not give up identity

A natural type is independent of a relationship
The objects cannot leave it

Ex: Reader

 18U. Aßmann, TU Dresden

Steimann Factorization

Splitting a full type into its natural and role-type components
 FullType = Natural x (role-type, role-type, ...)

 FullPerson = Person x (Reader, Father, Customer, ..)

Person

Grand
Father

Reader

Buyer

Sausage

Newspaper

PersonGrand
Child

Read

BoughtFullPerson

FullBook

FullPerson

FullNewsPaper

 19U. Aßmann, TU Dresden

Full Type is from
Inheritance Product Lattice

What is a reading buying grandfather person?

Person

Father

Mammal

LivingBeing

Thing

Dinosaurs

Chicken

┴

Mother

Grand
Father

Grand
Mother

Ancestor

┴

Acquain-
ted

Reader Writer

Accessor

┴

Negotiator

Contractor

Buyer Seller

Customer

┴

Natural (entity)
Role 1

Role 2
Role 3

 20U. Aßmann, TU Dresden

Simplified Representation of a Full
Type

Role models are interprocedural slices

Collaboration schemas are schemas (types) for interprocedural
slices

Person

Grand
Father

Reader

Buyer

Sausage

Newspaper

PersonGrand
Child

Read

Bought

 21U. Aßmann, TU Dresden

Simplified Extension

Collaboration schemas can be extended by new ones

Person

Sausage

Newspaper

Person

Reader

Read

Buyer

Bought

Grand
Father

Grand
Child

 22U. Aßmann, TU Dresden

A Collaboration Schema is a Relational
Module

The open ends are the plays-a tentacles

Grand
Father

Grand
Child

GrandFatherShipP

GrandFather

GrandChild

UML Notation with role-type parameter P:

 23U. Aßmann, TU Dresden

Newspaper-Reading GrandpaShip

Reader

Read

Grand
Father

Grand
Child

Reading
GrandFathershipP

N

Grand
Father

Grand
Child

Read

Reader

 24U. Aßmann, TU Dresden

ReadingBuying
GrandFathershipP

N

Grand
Father

Grand
Child

Read

Reader

S
Bought

Buying

Reader

Read

Buyer

Bought

Grand
Father

Grand
Child

 25U. Aßmann, TU Dresden

Implementation of Collaboration
Schemas

Collaboration schemas are type functors
 Functions on types

Direct implementation
 Languages: ObjectTeams, CeasarJ

 Mixin layers

 Role Object Pattern

 Semantic macros

 Generic templates (BETA, Compost)

 Aspects

Rewriting to standard languages
 Mapping (MDD process), e.g., with graph rewriting systems

Why Role Extension Retains Identity of
a Natural Type

 27U. Aßmann, TU Dresden

Role Extension Retains Identity

Role types are NON-RIGID

Person

Father

Reader

Person Father

Person

FatherMixin

Father

Person

FatherMixin

Father

Person

ReaderMixin ReadingFather

 28U. Aßmann, TU Dresden

Identity is Fixed to Core Facet of
Product Lattice

Role type extensions do not change the name of the full type

Person

Father

Mammal

LivingBeing

Thing

Dinosaurs

Chicken

┴

Mother

Grand
Father

Grand
Mother

Ancestor

┴

Acquain-
ted

Reader Writer

Accessor

┴

Negotiator

Contractor

Buyer Seller

Customer

┴

 29U. Aßmann, TU Dresden

Identity is Fixed to Core Facet of
Product Lattice

Role type extensions specify the behavior of a language concept
in context

TypeDecl

Declaration

NamedElement

Element

Expression

BinOp

┴

Dont Know

Persistent Transient

 Lifetime

┴

Unspecified

Safe Authentified

Access

┴

Constant Variable

AllocTime
Constant

SSA
Variable

Context
Object

┴

Problems In Language Composition

 31U. Aßmann, TU Dresden

Superclass Superimposition

How to add a new interface/role to existing class hierarchy?

TypeDecl

Declaration

Element

Expression

BinOp

┴

TypeChecker

Type

TypeDecl
Collector

 32U. Aßmann, TU Dresden

Good News: Role Superimposition EASY

Roles are transient, non-rigid, identity-preserving
 Entity inheritance hierarchies are preserved

TypeDecl

Declaration

Element

Expression

BinOp

┴

Type

Collectable

Checkable

Extensions are orthogonal
(modulo dependencies)

TypeDecl
Collector

TypeChecker

 33U. Aßmann, TU Dresden

Bad News: Superimposition of Entity
Natural Superclasses Stays HARD

Identity of all derived subclasses changes
 Declaration --> Declaration' under-a Statement

 Expression --> Expression' under-a Statement

TypeDecl

Declaration

Element

Expression

BinOp

┴

Statement

TypeDecl'

Declaration' Expression'

BinOp'

┴

Element

 34U. Aßmann, TU Dresden

Example: Complex Numbers

Superimposing a new concept ComplexNumber to a type
hierarchy is an extension of the entity (natural) concepts of a
language
 Due to identity change, type rules for all Numbers have to be changed [van

Wyk, JLE application]

Int

Number

Type

Double

┴

ComplexNumber

Int'

Number'

Double'

┴

Type

 35U. Aßmann, TU Dresden

Dynamic Semantics can be Composed
as Role Models

With dynamic composition of role models
 instead of static composition of collaboration schemas

TypeDecl

Declaration

Element

Expression

BinOp

┴

:Analysis
State

:Run-Time
State:Interpretable

:Evaluatable

Type

Collectable

Checkable

TypeDecl
Collector

TypeChecker

:Interpreter

:Partial
Evaluator

The LanGems Language Composition
System

U. Aßmann, TU Dresden

Abstract Syntax of a language module are specified by a type collaboration
Naturals define rigid types with stable identity which have properties,
interrelations to other types and behaviour (semantics, not meant to vary
Roles define Variation Points in a language module
Roles obtain identity and behaviour from a role player outside the module, can
also contribute own have properties, interrelations to other types and behaviour
(semantics)
RoleOperations define semantic binding point for role players, a role-playing
contract

 statechart

Activity

Action

State

Trigger
Chart

Element

Transition

trigger

action

entryexit

do in

out

start end

Guard

elements

guard

Activity

Trigger

Guard

~ getTriggerName(): String

~ getActivityName(): String
~ executeActivity(): Trigger

~ evaluate(Object context): Boolean

Natural

Role

~ roleOp()

37Christian Wende, TU Dresden

LanGems: Role-based Language
Specification

U. Aßmann, TU Dresden

 ocl

OCLExpression

 xul

 statechart
• Types contribute the composition interface of

language modules
• Role Types: required interface
• Natural Types: provided interface

• Language Composition is described by
superimposition of the collaborations of
several modules where RoleBinding ()
connects role player and role

• Binding of RoleOperations in the context
of a role player (RoleOperationBindings)
contributes structual and semantic
adaptation of the role player w.r.t the
role contract

GuardActivity

Form Button

Trigger

Form plays Activity {
 getActivityName(): player.getTitle();
 executeActivity (): player.open();
}

Button plays Trigger {
 getTriggerName(): player.getText();
}

OCLExpression plays Guard {
 evaluate(Object context) : if (player.type = boolean)

 then player.interpret(context)
 else false;

}

38Christian Wende, TU Dresden

Module Composition Language

U. Aßmann, TU Dresden

Component Model
LanGems

Specification Language

<< instance of >>

Composition Language
LanGems

Composition Language

Composition program

<< instance of >>

<< input of >>

Composition Technique
Generative Role Implementation

Pattern

Composition
Tool

<< implements>>

<< executed by >>
LanGem

Specification

Integrated Language

<< output >>

39Christian Wende, TU Dresden

LanGems Composition System

U. Aßmann, TU Dresden

OCL
• Complex language
• Applied at different abstraction layers and environments
• Several proposals for extension of OCL

Activities
• Separation of 13 language modules
• Each contributes specification of

abstract syntax, concrete syntax
and static semantics

• Language adaptation to use
OCL on different
metamodels
(Ecore, UML, MOF)

• Exemplary language extension
with temporal logic

40Christian Wende, TU Dresden

Case Study: Modularisation of OCL

U. Aßmann, TU Dresden

Experienced Benefits

• Self-contained comprehensible
modules
• Independent Development and

Maintenance
• Explicit language component interfaces decouple language modules
• Adaptation of OCL by variation on language modules
• Extension of OCL by adding language modules

• Role-based modularisation and composition supports for concrete syntax and
language semantics
• Composition did not invalidate module syntax and semantics
• Composition provides means for semantic (and structural) adaptation

Problems & Open Issues

• Operator priorities needs to be considered during composition
• Context-free parsing required adjustment of token definitions among modules
• Dynamic Semantics not implemented yet

41Christian Wende, TU Dresden

Evaluation

 42U. Aßmann, TU Dresden

Solution to the Little Riddles..

Mother Woman

Person

Man

FatherPerson

Thing

Woman

┴

Mother

Grand
Father

Grand
Mother

Ancestor

┴

Man

Father

 43U. Aßmann, TU Dresden

Summary

Collaboration schemas (role-type models) offer
 relational modules for model and language composition

 extensibility for M1 models, classes, programs can easily be lifted to M2
metamodels (language specifications)

The Steimann Factorization (natural – roles) allows for
 simple extension static semantic specifications, because role extension does

not change identity of objects or concepts

 simple extension of interpreters (dynamic semantics)

Entity extension - of natural language concepts - stays hard

Role-based language composition system LanGems
 allows to define encapsulated language components

 provides contractually composition interfaces between language components,
and

 allows to compose and reuse language components individually

 44U. Aßmann, TU Dresden

End

TUD ST group http://st.inf.tu-dresden.de

Reuseware toolset http://www.reuseware.org

ModelPlex project http://www.modelplex.org

MOST project http://www.most-project.eu

http://st.inf.tu-dresden.de/
http://www.reuseware.org/
http://www.modelplex.org/
http://www.most-project.eu/

 45U. Aßmann, TU Dresden

Other Literature
U. Aßmann. Invasive Software Composition. Springer-Verlag, Feb. 2003.

G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. Ph.D. thesis, Dept. of Computer Science, University of Utah, Mar.
1992.

G. Bracha and W. Cook. Mixin-based inheritance. In N. Meyrowitz, ed.,
OOPSLA/ECOOP '90, number 25(10) in ACM SIGPLAN Notices, pages 303 311.
ACM Press, New York, Oct. 1990.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J.
Irwin. Aspect-oriented programming. ECOOP 97, volume 1241 of LNCS, pp 220
242. Springer, 1997.

S. Krishnamurthi, M. Felleisen, and B. F. Duba. From Macros to Reusable
Generative Programming. In U. W. Eisenecker and K. Czarnecki, ed., GCSE, LNCS
1799, Springer 1999.

P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of separation: Multi-
dimensional separation of concerns. In Proceedings of ICSE'99, pp 107-119, 1999

 46U. Aßmann, TU Dresden

Literature on Roles

T. Reenskaug, P. Wold, O. A. Lehne. Working with objects. Manning. The OOram
Method. http://heim.ifi.uio.no/~trygver/documents/book11d.pdf

H. Allert, P. Dolog, W. Nejdl, W. Siberski, F. Steimann. Role-Oriented Models for
Hypermedia Construction – Conceptual Modelling for the Semantic Web.
citeseer.org.

N. Guarino, M. Carrara, and P. Giaretta. An ontology of meta-level categories. In
Proceedings of the Fourth International Conference on Knowledge Representation
and Reasoning, pages 270–280. Morgan Kaufmann, San Mateo, 1994.

F. Steimann. On the representation of roles in object-oriented and conceptual
modelling. Data and Knowledge Engineering. 2000.

T. Reenskaug, P. Wold, O. A. Lehne. Working with objects. Manning.
http://heim.ifi.uio.no/~trygver/documents/book11d.pdf

D. Riehle, T. Gross. Role Model Based Framework Design and Integration. OOPSLA
1998.

U. Aßmann, J. Henriksson, I. Savga, J. Johannes: Composition of Ontologies and
Rule Sets. REASONING WEB Summer School, LNCS 4126.

http://heim.ifi.uio.no/~trygver/documents/book11d.pdf

The End
REWERSE Working Group I3 (Composition and Typing)

http://www.rewerse.net

TUD ST group http://st.inf.tu-dresden.de

Reuseware toolset http://www.reuseware.org

ModelPlex project http://www.modelplex.org

MOST project http://www.most-project.eu

http://www.rewerse.net/
http://st.inf.tu-dresden.de/
http://www.reuseware.org/
http://www.modelplex.org/
http://www.most-project.eu/

	Slide 1
	Slide 2
	Composition and Typing
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	The End

