

Fakultät Informatik | Institut für Software- und Multimediatechnik | Lehrstuhl für Softwaretechnologie

Model-driven Multi-Quality Auto-Tuning of Robotic Applications MORSE 2015

Christian Piechnick, Sebastian Götz, René Schöne and <u>Uwe Aßmann</u>

Technische Universität Dresden Software Engineering Group

Frank Bahrmann and Hans-Joachim Böhme

HTW Dresden Artificial Intelligence Group

DRESDEN concept Exzellenz aus Wissenschaft und Kultur

Outline

- 1. Motivation and Background
- 2. MQuAT for Simultanous Localization and Mapping (SLAM)
- 3. Evaluation of SLAM as a Service
- 4. Summary and Future Work

Model-driven Multi-Quality Auto-Tuning of Robotic Applications

MOTIVATION AND BACKGROUND

Simultaneous Localization and Mapping (SLAM)

2D Laser Scanner

RGB Camera

Stereo Camera + Ultra-Sonic Sensor

Many mobile Robots must operate in varying or unkown environments.

- No static map feasible (changing layouts or unkown enviroments)
- Dynamic creation of a map
- Dynamic localization within the dynamically created map

4

SLAM algorithms create a map by interpreting sensor data and localize the position of the corresponding entity simultanously.

SLAM Variability

- **60+ different implementations** found in a online search
- Different requirements w.r.t.
 - Resource consumption (e.g., cpu, main memory)
 - Performance
 - Precision of the algorithm
 - Context dependencies (e.g., outdoor, indoor, available hardware etc.)
 - Software platform (e.g., programming language, robotic framework etc.)

Very poor reuse

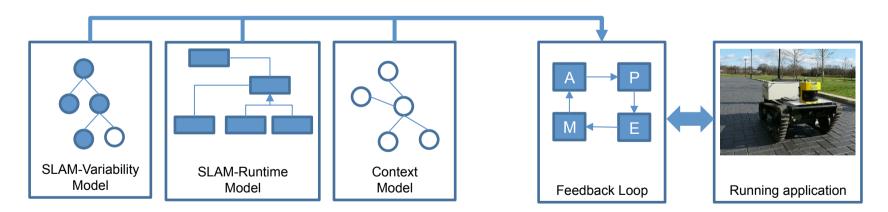
- No standardization of the used data types (e.g., grid maps, feature maps, laser scanner data etc.)
- No modularization
- Complete re-implementation on changed requirements
- Requirements may change during runtime
 - Runtime adaptivity needed

SLAM Work at ST Group (TU Dresden)

Strategic Goal 1: Modularization of SLAM to increase reuse Strategic Goal 2: Self-Adaptive SLAM for enhancing robotic applications

What we need

- PIM for SLAM process
- PIM for data-representations
- PSM for SLAM modules (with requirements and NFPs)
- Models for variability



SLAM Work at AI Group (HTW Dresden)

Framework GeneralRobot

- Component-based Middleware for Robotic Applications
- Modules for map creation, localization, navigation etc.
- Static variability for SLAM (configuration file)
- High-level modules (i.e., non-hierarchical components)
 - Variability managed manually within Java-Code
 - Scattering and Tangling of variability management code
 - No focus on maintainability and reusability

Stable running robotic applications

- "August der Smarte" Tour Guide Robot in the museum "Technische Sammlungen Dresden"
- AAL Robot in a elderly care institution in Dresden

The CRC HAEC

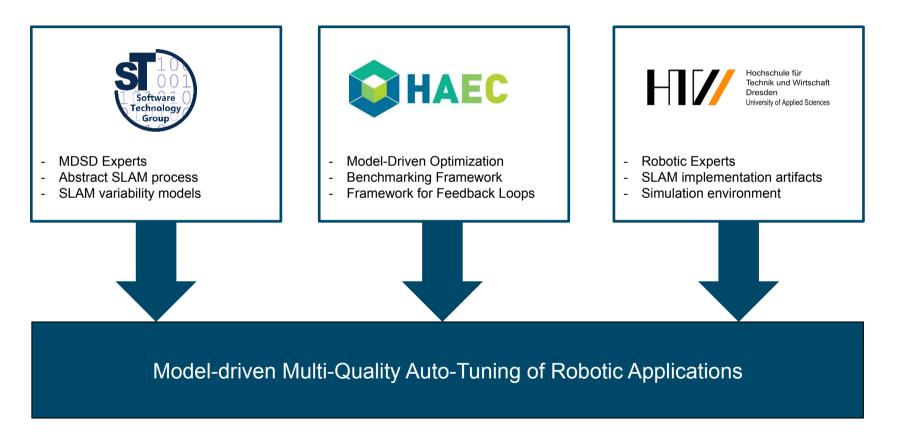
CRC 912 - Highly Adaptive Energy-Efficient Computing

- New hardware- and software-architectures for energy proportional solutions
- Domain: Server Applications
- HAEC Box as prototypical hardware platform
 - Cluster of *Cubieboards* as single-board computers
 - Boards can be switched-off on demand to reduce energy consumption

Multi-Quality Auto-Tuning (MQuAT) for the runtime optimization of software architectures

Model-driven Multi-Quality Auto-Tunir

Collaboration



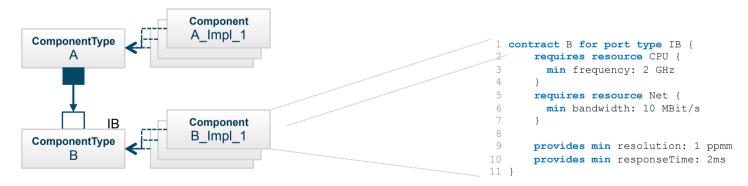
Model-driven Multi-Quality Auto-Tuning of Robotic Applications

MQUAT FOR SIMULTANOUS LOCALIZATION AND MAPPING (MQUAT-SLAM)

Multi-Quality Auto-Tuning

Multi-Quality Auto-Tuning (MQuAT)

- **Structural Model:** SW/HW Description Language for architectures
 - Each component type can have **multiple implementations** (SW variation points)
- Variant Model: State of HW/SW components (e.g., current SW architecture, CPU load etc.)
- Non-functional properties of provided/required ports described with contracts (QCL)
- Component-stub code + ILP generation
- Benchmarking framework + THEATRE runtime environment (implementation of feedback loop)



Contribution

Current State of SLAM algorithms

- Almost no reuse of SLAM code (Re-Implementation for varying requirements)
- Almost no reuse in adaptivity-handling code (Re-Implementation for each solution)
- Variability handling within business logic

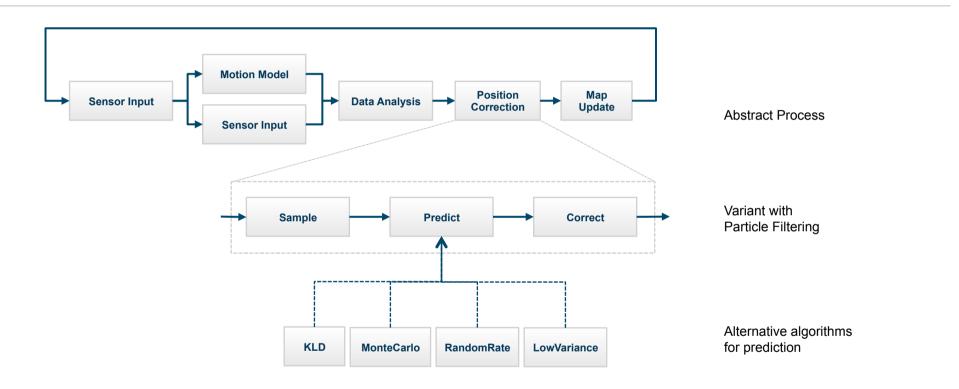
Desired State

- SLAM-Framework with all alternative implementation variants
- Automatic generation of adaptivity-handling code
- External feedback loop to resolve scattering and tangling
- Change of objective function changes energy consumption, performance, and precision

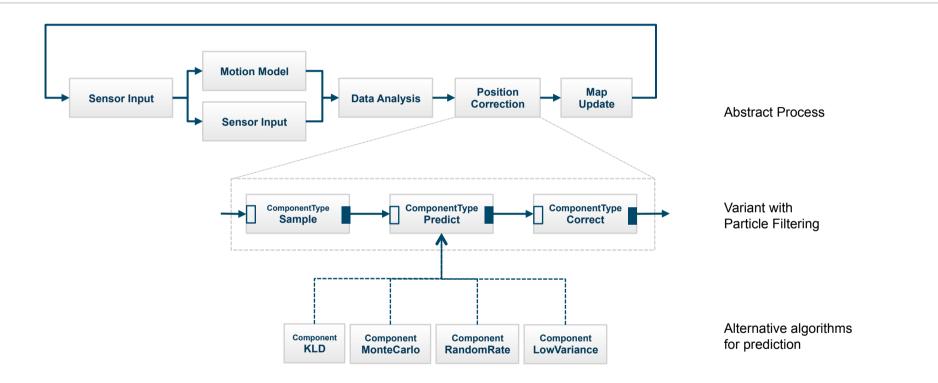
Contribution

- MQuAT for SLAM process (SLAM modularization, Code generation, ILP generation, Feedback Loop)
- Optimizer follows changes of objective function
- Case study to show feasability
 Model-driven Multi-Quality Auto-Tuning of Robotic Applications

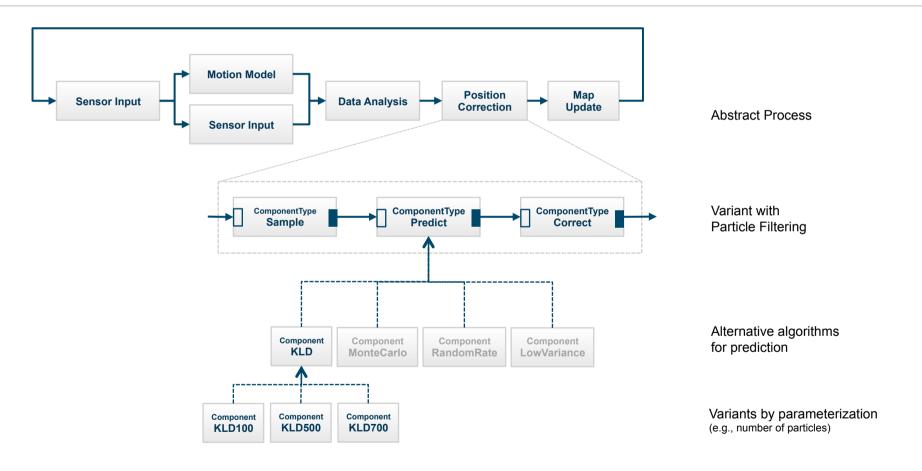
SLAM Process Model



MQuAT Modeling of the SLAM Process



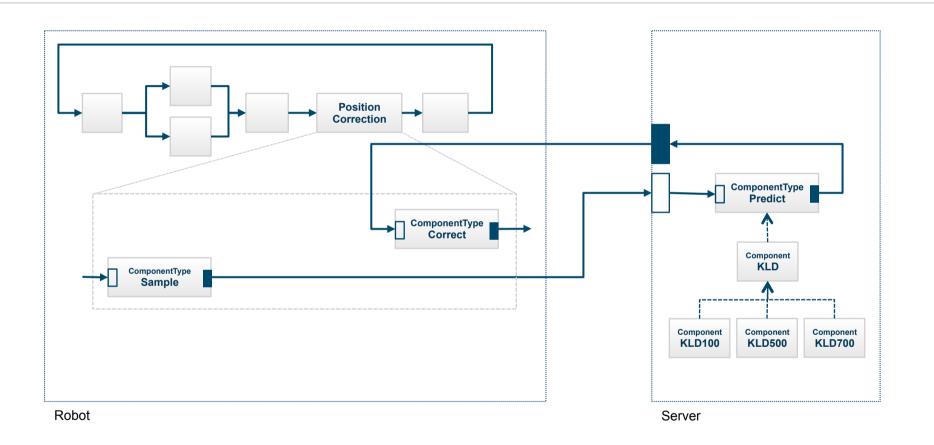
MQuAT Modeling of the SLAM Process



SLAM as a Service

- Battery is a very limited resource in mobile robotic systems
 - Predicition of particles is a computation intensive task
 - \rightarrow Prediction consumes much energy
- Outsourcing of the prediction logic
- Hosting the prediction calculation on a server as a service

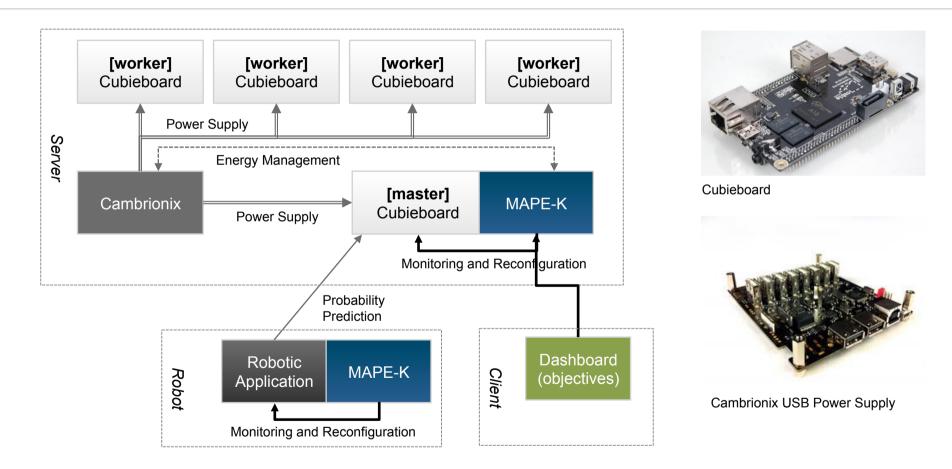
SLAM as a Service



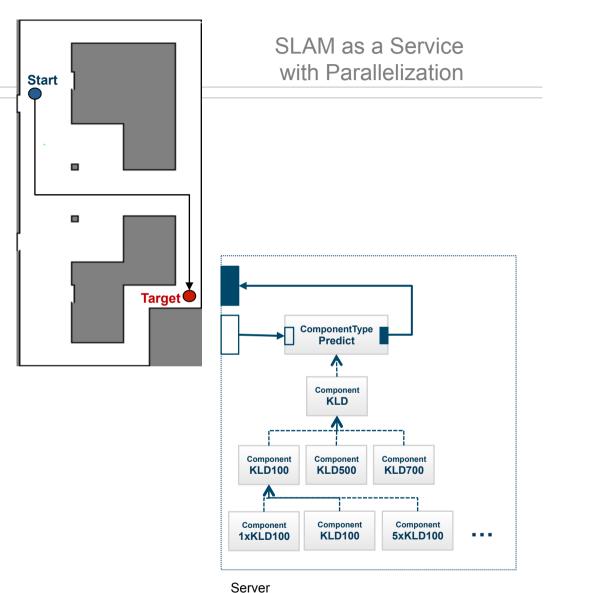
Model-driven Multi-Quality Auto-Tuning of Robotic Applications

EVALUATION SLAM PARTICLE PREDICTION AS A SERVICE

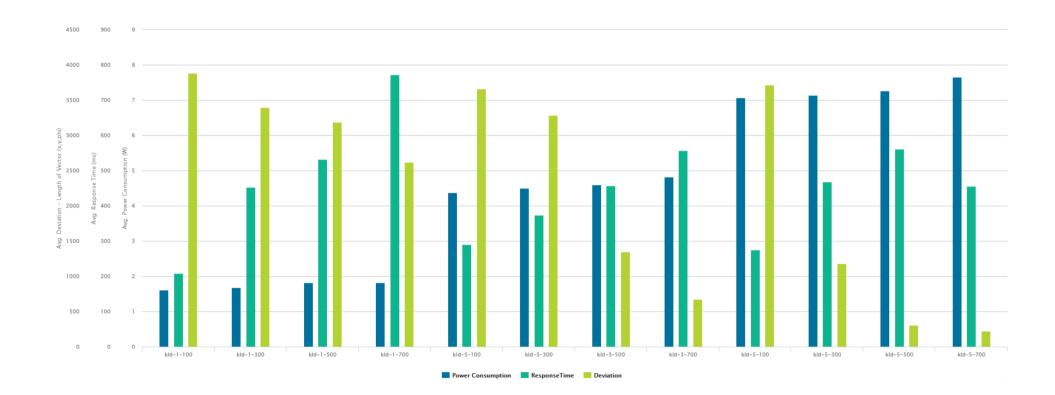
Hardware setup

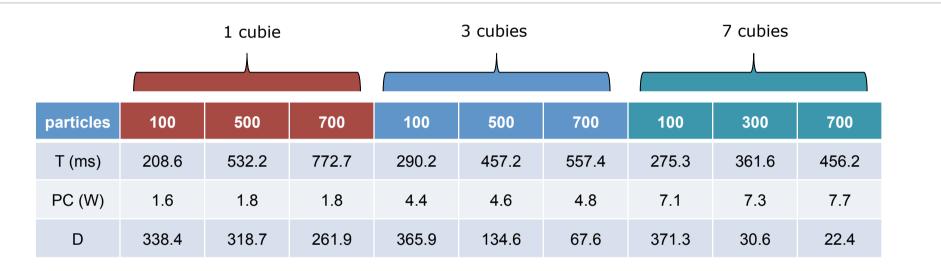


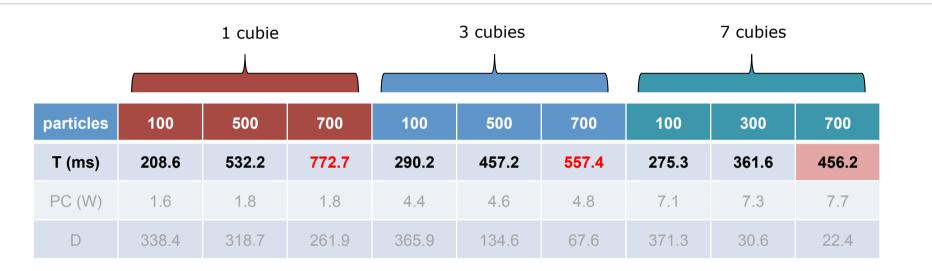
- Robot driving from the start to the target position
- Simbad simulation environment
- **GeneralRobot** target framework
- MQuAT SLAM optimizer
 - Prediction is done for each particle in isolation
 → Can calculated in parallel
 - 1-5 boards with 2 cores, max. 10 parallel threads
 - Kullback-Leibler Divergence with n*100 particles
- For each variant, measure:
 - PC: Server power consumption in ms
 - T: Response time of the service in Watt
 - D: Deviation between real and estimated position as length of the vector (Δx; Δy; ΔΦ)
 x,y = Position, Φ = rotation



Result

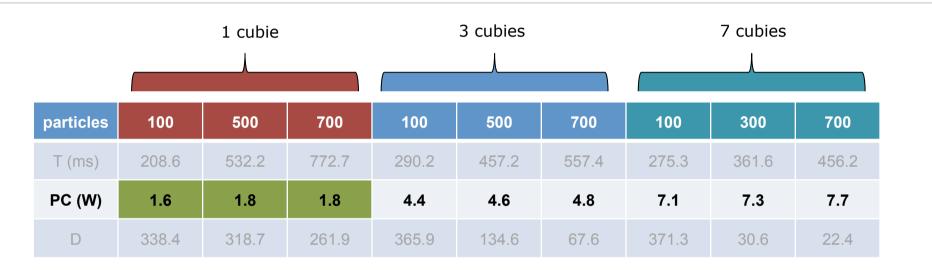




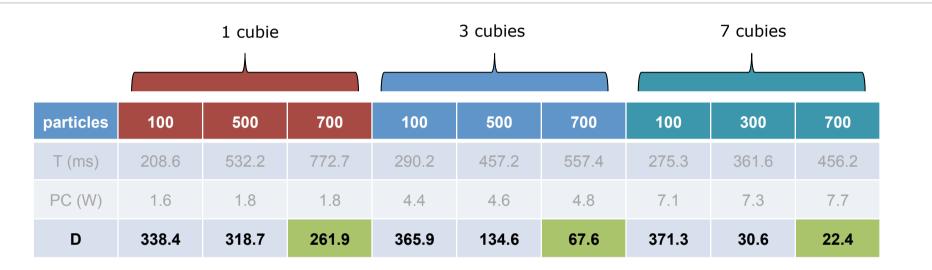


Response time depends on both parameters

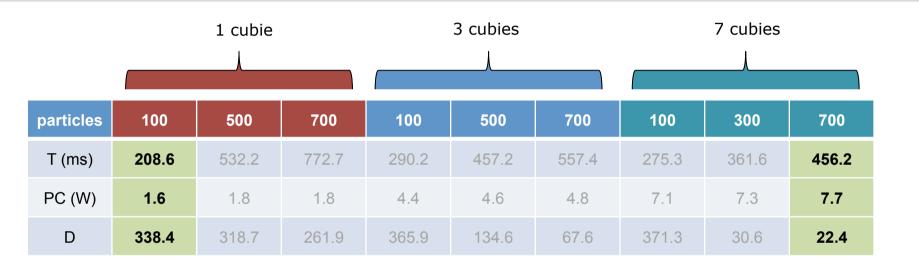
- \rightarrow More boards = lower response time
- \rightarrow More particles = higher response time



- **Power consumption** mainly depends on number of boards
 - \rightarrow More boards = higher power consumption
 - \rightarrow More particles = slightly higher power consumption



- **Deviation** depends on both parameters
 - \rightarrow More boards = lower deviation
 - \rightarrow More particles = lower deviation



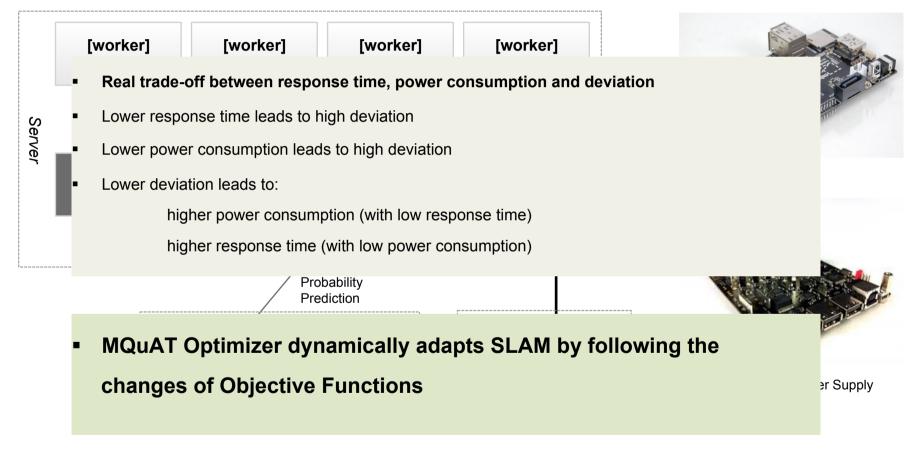
Real trade-off between response time, power consumption and deviation

- Lower response time leads to high deviation
- Lower power consumption leads to high deviation
- Lower deviation leads to:

higher power consumption (with low response time)

higher response time (with low power consumption)

MQuAT Optimizer Follows Change of Objective Function of ILP



Model-driven Multi-Quality Auto-Tuning of Robotic Applications

CONCLUSION AND FUTURE WORK

Conclusion

- SLAM has a high degree of variation based on varying requirements (also @run.time)
- State: Poor reuse of SLAM-code and adaptation logic
- **Assumption**: Component Modeling + Code Generation decreases development time and increases

maintainability

- MQuAT for runtime optimization of architectures with Quality Contracts
 - Applicable for SLAM processes
- Benchmarks show that trade-offs exist (only for one small step within a complex process)
- Energy-consumption can be decreased, when lower response time or lower quality is accapable
- MQuAT optimizer follows changes of objectives

Future Work

- Include benchmarks of the other variants of the prediction algorithm
- Model and migrate existing implementations for whole SLAM process
- Develop SLAM-Toolbox for static and dynamic variant generation
- Integration in standard-platforms (e.g., ROS)

Fakultät Informatik | Institut für Software- und Multimediatechnik | Lehrstuhl für Softwaretechnologie

Model-driven Multi-Quality Auto-Tuning of Robotic Applications MORSE 2015

Christian Piechnick, Sebastian Götz, René Schöne and <u>Uwe Aßmann</u>

Technische Universität Dresden Software Engineering Group

Frank Bahrmann and Hans-Joachim Böhme

HTW Dresden Artificial Intelligence Group

DRESDEN concept Exzellenz aus Wissenschaft und Kultur