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Simultaneous Localization and Mapping (SLAM) 
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SLAM algorithms create a map by interpreting sensor data and localize the position of the 
corresponding entity simultanously.  

2D Laser Scanner RGB Camera Stereo Camera + Ultra-Sonic Sensor 

Many mobile Robots must operate in varying or unkown environments.  
§  No static map feasible (changing layouts or unkown enviroments) 
§  Dynamic creation of a map  
§  Dynamic localization within the dynamically created map 



SLAM Variability 
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§  60+ different implementations found in a online search  
 
§  Different requirements w.r.t. 

§  Resource consumption (e.g., cpu, main memory) 
§  Performance 
§  Precision of the algorithm  
§  Context dependencies (e.g., outdoor, indoor, available hardware etc.)  
§  Software platform (e.g., programming language, robotic framework etc.) 
 

§  Very poor reuse  
§  No standardization of the used data types (e.g., grid maps, feature maps, laser scanner data etc.) 
§  No modularization 
§  Complete re-implementation on changed requirements 

§  Requirements may change during runtime 
§  Runtime adaptivity needed 



SLAM Work at ST Group (TU Dresden) 
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What we need 
§  PIM for  SLAM process 
§  PIM for data-representations  
§  PSM for SLAM modules (with requirements and NFPs) 
§  Models for variability 

Strategic Goal 1: Modularization of SLAM to increase reuse 
Strategic Goal 2: Self-Adaptive SLAM for enhancing robotic applications 

SLAM-Variability 
Model 

SLAM-Runtime 
Model Feedback Loop 

M
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E 

Context 
Model Running application 



SLAM Work at AI Group (HTW Dresden) 
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Framework GeneralRobot 
§  Component-based Middleware for Robotic Applications  
§  Modules for map creation, localization, navigation etc. 

 
§  Static variability for SLAM (configuration file) 
 
§  High-level modules (i.e., non-hierarchical components) 

§  Variabilty managed manually within Java-Code 
§  Scattering and Tangling of variability management code 
§  No focus on maintainability and reusability  

Stable running robotic applications 
§  „August der Smarte“ – Tour Guide Robot in the museum „Technische Sammlungen Dresden“ 
§  AAL Robot in a elderly care institution in Dresden 
 



The CRC HAEC 
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CRC 912 - Highly Adaptive Energy-Efficient Computing 

§  New hardware- and software-architectures for energy proportional solutions  

§  Domain: Server Applications 

§  HAEC Box as prototypical hardware platform  

§  Cluster of Cubieboards as single-board computers  
§  Boards can be switched-off on demand  

to reduce energy consumption 

 

 

Multi-Quality Auto-Tuning (MQuAT) for the  
runtime optimization of software architectures  
 
  
 



-  Model-Driven Optimization 
-  Benchmarking Framework 
-  Framework for Feedback Loops 
 

Collaboration 

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 9 

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 

-  Robotic Experts 
-  SLAM implementation artifacts 
-  Simulation environment 
 

-  MDSD Experts 
-  Abstract SLAM process 
-  SLAM variability models 
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MQUAT FOR SIMULTANOUS 
LOCALIZATION AND MAPPING 
(MQUAT-SLAM) 
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Multi-Quality Auto-Tuning 
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Multi-Quality Auto-Tuning (MQuAT) 

§  Structural Model: SW/HW Description Language for architectures 

§  Each component type can have multiple implementations (SW variation points) 

§  Variant Model: State of HW/SW components (e.g., current SW architecture, CPU load etc.) 

§  Non-functional properties of provided/required ports described with contracts (QCL) 

§  Component-stub code + ILP generation 

§  Benchmarking framework + THEATRE runtime environment (implementation of feedback loop) 

  1 contract B for port type IB { 
 2     requires resource CPU { 
 3       min frequency: 2 GHz 
 4     } 
 5     requires resource Net { 
 6       min bandwidth: 10 MBit/s 
 7     } 
 8  
 9     provides min resolution: 1 ppmm 
10     provides min responseTime: 2ms 
11 } 

ComponentType 
A 

ComponentType 
B 

Component 
B_Impl_1 

Component 
A_Impl_1 

IB 



Contribution 
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Current State of SLAM algorithms 

§  Almost no reuse of SLAM code (Re-Implementation for varying requirements) 

§  Almost no reuse in adaptivity-handling code (Re-Implementation for each solution) 

§  Variability handling within business logic  
 

Desired State 

§  SLAM-Framework with all alternative implementation variants  

§  Automatic generation of adaptivity-handling code 

§  External feedback loop to resolve scattering and tangling  

§  Change of objective function changes energy consumption, performance, and precision 

Contribution  

§  MQuAT for SLAM process (SLAM modularization, Code generation, ILP generation, Feedback Loop) 

§  Optimizer follows changes of objective function 

§  Case study to show feasability 
 



SLAM Process Model 
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Motion Model 

Sensor Input 

Data Analysis Position 
Correction 

Map 
Update Sensor Input 

Sample Predict Correct 

KLD MonteCarlo RandomRate LowVariance 

Abstract Process 

Variant with  
Particle Filtering 

Alternative algorithms 
for prediction 



MQuAT Modeling of the SLAM Process 
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Motion Model 

Sensor Input 

Data Analysis Position 
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Map 
Update Sensor Input 

ComponentType 
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ComponentType 
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ComponentType 
Correct 

Component 
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Component 
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MQuAT Modeling of the SLAM Process 
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Motion Model 

Sensor Input 

Data Analysis Position 
Correction 

Map 
Update Sensor Input 

ComponentType 
Sample 

ComponentType 
Predict 

ComponentType 
Correct 

Component 
KLD 

Component 
MonteCarlo 

Component 
RandomRate 

Component 
LowVariance 

Abstract Process 

Variant with  
Particle Filtering 

Alternative algorithms 
for prediction 

Component 
KLD100 

Component 
KLD500 

Component 
KLD700 

Variants by parameterization 
(e.g., number of particles) 



SLAM as a Service 
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§  Battery is a very limited resource in mobile robotic systems  

§  Predicition of particles is a computation intensive task  

à Prediction consumes much energy  

§  Outsourcing of the prediction logic  

§  Hosting the prediction calculation on a server as a service  

Prediction 



SLAM as a Service 
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Position 
Correction 

ComponentType 
Sample 

ComponentType 
Predict 

ComponentType 
Correct 

Component 
KLD 

Component 
KLD100 

Component 
KLD500 

Component 
KLD700 

Robot Server 
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EVALUATION 
SLAM PARTICLE PREDICTION AS A 
SERVICE  
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Hardware setup 
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SLAM as a Service  
with Parallelization 

§  Robot driving from the start to the target position 

§  Simbad simulation environment 

§  GeneralRobot target framework  

§  MQuAT SLAM optimizer 
§  Prediction is done for each particle in isolation  

à Can calculated in parallel 

§  1-5 boards with 2 cores, max. 10 parallel 

threads 
§  Kullback-Leibler Divergence with n*100 

particles  

§  For each variant, measure: 

§  PC: Server power consumption in ms 

§  T: Response time of the service in Watt 

§  D: Deviation between real and estimated 

position as length of the vector (Δx; Δy; ΔΦ) 
x,y = Position, Φ = rotation 

Start 

Target 

ComponentType 
Predict 

Component 
KLD 

Component 
KLD100 

Component 
KLD500 

Component 
KLD700 

Server 

Component 
1xKLD100 

Component 
KLD100 

Component 
5xKLD100 … 



Result 
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Result 
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particles 100 500 700 100 500 700 100 300 700 

T (ms) 208.6 532.2 772.7 290.2 457.2 557.4 275.3 361.6 456.2 

PC (W) 1.6 1.8 1.8 4.4 4.6 4.8 7.1 7.3 7.7 

D 338.4 318.7 261.9 365.9 134.6 67.6 371.3 30.6 22.4 

1 cubie 3 cubies 7 cubies 



Result 
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particles 100 500 700 100 500 700 100 300 700 

T (ms) 208.6 532.2 772.7 290.2 457.2 557.4 275.3 361.6 456.2 

PC (W) 1.6 1.8 1.8 4.4 4.6 4.8 7.1 7.3 7.7 

D 338.4 318.7 261.9 365.9 134.6 67.6 371.3 30.6 22.4 

§  Response time depends on both parameters  

à More boards = lower response time 

à More particles = higher response time 

 

1 cubie 3 cubies 7 cubies 



Result 
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particles 100 500 700 100 500 700 100 300 700 

T (ms) 208.6 532.2 772.7 290.2 457.2 557.4 275.3 361.6 456.2 

PC (W) 1.6 1.8 1.8 4.4 4.6 4.8 7.1 7.3 7.7 

D 338.4 318.7 261.9 365.9 134.6 67.6 371.3 30.6 22.4 

§  Power consumption mainly depends on number of boards 

à More boards = higher power consumption 

à More particles = slightly higher power consumption  

1 cubie 3 cubies 7 cubies 



Result 
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particles 100 500 700 100 500 700 100 300 700 

T (ms) 208.6 532.2 772.7 290.2 457.2 557.4 275.3 361.6 456.2 

PC (W) 1.6 1.8 1.8 4.4 4.6 4.8 7.1 7.3 7.7 

D 338.4 318.7 261.9 365.9 134.6 67.6 371.3 30.6 22.4 

§  Deviation depends on both parameters 

à More boards = lower deviation  

à More particles = lower deviation  

  

1 cubie 3 cubies 7 cubies 



Result 
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particles 100 500 700 100 500 700 100 300 700 

T (ms) 208.6 532.2 772.7 290.2 457.2 557.4 275.3 361.6 456.2 

PC (W) 1.6 1.8 1.8 4.4 4.6 4.8 7.1 7.3 7.7 

D 338.4 318.7 261.9 365.9 134.6 67.6 371.3 30.6 22.4 

§  Real trade-off between response time, power consumption and deviation 

§  Lower response time leads to high deviation  

§  Lower power consumption leads to high deviation  

§  Lower deviation leads to: 

 higher power consumption (with low response time) 

 higher response time (with low power consumption)  

  

1 cubie 3 cubies 7 cubies 

Objective 
function of ILP 
important 



MQuAT Optimizer Follows Change of Objective Function of ILP 
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§  Real trade-off between response time, power consumption and deviation 

§  Lower response time leads to high deviation  

§  Lower power consumption leads to high deviation  

§  Lower deviation leads to: 

 higher power consumption (with low response time) 

 higher response time (with low power consumption)  

  

§  MQuAT Optimizer dynamically adapts SLAM by following the 

changes of Objective Functions 
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CONCLUSION AND FUTURE WORK 
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-  SLAM has a high degree of variation based on varying requirements (also @run.time) 

-  State: Poor reuse of SLAM-code and adaptation logic 

-  Assumption: Component Modeling + Code Generation decreases development time and increases 

maintainability 

-  MQuAT for runtime optimization of architectures with Quality Contracts  

-  Applicable for SLAM processes  

 

-  Benchmarks show that trade-offs exist (only for one small step within a complex process) 

-  Energy-consumption can be decreased, when lower response time or lower quality is accapable  

-  MQuAT optimizer follows changes of objectives 
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Future Work 
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-  Include benchmarks of the other variants of the prediction algorithm  

-  Model and migrate existing implementations for whole SLAM process  

-  Develop SLAM-Toolbox for static and dynamic variant generation  

-  Integration in standard-platforms (e.g., ROS)  
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