
Fakultät Informatik | Institut für Software- und Multimediatechnik | Lehrstuhl für Softwaretechnologie

Model-driven Multi-Quality Auto-Tuning of
Robotic Applications
MORSE 2015

Christian Piechnick, Sebastian Götz,
René Schöne and Uwe Aßmann

Technische Universität Dresden
Software Engineering Group

Frank Bahrmann and
Hans-Joachim Böhme

HTW Dresden

Artificial Intelligence Group

Model-driven Multi-Quality Auto-Tuning of Robotic Applications

Outline

2

1. Motivation and Background

2. MQuAT for Simultanous Localization and Mapping (SLAM)

3.  Evaluation of SLAM as a Service

4.  Summary and Future Work

Model-driven Multi-Quality Auto-Tuning of Robotic Applications

MOTIVATION AND BACKGROUND
Model-driven Multi-Quality Auto-Tuning of Robotic Applications

3

Simultaneous Localization and Mapping (SLAM)

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 4

SLAM algorithms create a map by interpreting sensor data and localize the position of the
corresponding entity simultanously.

2D Laser Scanner RGB Camera Stereo Camera + Ultra-Sonic Sensor

Many mobile Robots must operate in varying or unkown environments.
§  No static map feasible (changing layouts or unkown enviroments)
§  Dynamic creation of a map
§  Dynamic localization within the dynamically created map

SLAM Variability

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 5

§  60+ different implementations found in a online search

§  Different requirements w.r.t.

§  Resource consumption (e.g., cpu, main memory)
§  Performance
§  Precision of the algorithm
§  Context dependencies (e.g., outdoor, indoor, available hardware etc.)
§  Software platform (e.g., programming language, robotic framework etc.)

§  Very poor reuse
§  No standardization of the used data types (e.g., grid maps, feature maps, laser scanner data etc.)
§  No modularization
§  Complete re-implementation on changed requirements

§  Requirements may change during runtime
§  Runtime adaptivity needed

SLAM Work at ST Group (TU Dresden)

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 6

What we need
§  PIM for SLAM process
§  PIM for data-representations
§  PSM for SLAM modules (with requirements and NFPs)
§  Models for variability

Strategic Goal 1: Modularization of SLAM to increase reuse
Strategic Goal 2: Self-Adaptive SLAM for enhancing robotic applications

SLAM-Variability
Model

SLAM-Runtime
Model Feedback Loop

M

A P

E

Context
Model Running application

SLAM Work at AI Group (HTW Dresden)

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 7

Framework GeneralRobot
§  Component-based Middleware for Robotic Applications
§  Modules for map creation, localization, navigation etc.

§  Static variability for SLAM (configuration file)

§  High-level modules (i.e., non-hierarchical components)

§  Variabilty managed manually within Java-Code
§  Scattering and Tangling of variability management code
§  No focus on maintainability and reusability

Stable running robotic applications
§  „August der Smarte“ – Tour Guide Robot in the museum „Technische Sammlungen Dresden“
§  AAL Robot in a elderly care institution in Dresden

The CRC HAEC

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 8

CRC 912 - Highly Adaptive Energy-Efficient Computing

§  New hardware- and software-architectures for energy proportional solutions

§  Domain: Server Applications

§  HAEC Box as prototypical hardware platform

§  Cluster of Cubieboards as single-board computers
§  Boards can be switched-off on demand

to reduce energy consumption

Multi-Quality Auto-Tuning (MQuAT) for the
runtime optimization of software architectures

-  Model-Driven Optimization
-  Benchmarking Framework
-  Framework for Feedback Loops

Collaboration

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 9

Model-driven Multi-Quality Auto-Tuning of Robotic Applications

-  Robotic Experts
-  SLAM implementation artifacts
-  Simulation environment

-  MDSD Experts
-  Abstract SLAM process
-  SLAM variability models

Model-driven Multi-Quality Auto-Tuning of Robotic Applications

MQUAT FOR SIMULTANOUS
LOCALIZATION AND MAPPING
(MQUAT-SLAM)

Model-driven Multi-Quality Auto-Tuning of Robotic Applications

10

Multi-Quality Auto-Tuning

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 11

Multi-Quality Auto-Tuning (MQuAT)

§  Structural Model: SW/HW Description Language for architectures

§  Each component type can have multiple implementations (SW variation points)

§  Variant Model: State of HW/SW components (e.g., current SW architecture, CPU load etc.)

§  Non-functional properties of provided/required ports described with contracts (QCL)

§  Component-stub code + ILP generation

§  Benchmarking framework + THEATRE runtime environment (implementation of feedback loop)

 1 contract B for port type IB {
 2 requires resource CPU {
 3 min frequency: 2 GHz
 4 }
 5 requires resource Net {
 6 min bandwidth: 10 MBit/s
 7 }
 8
 9 provides min resolution: 1 ppmm
10 provides min responseTime: 2ms
11 }

ComponentType
A

ComponentType
B

Component
B_Impl_1

Component
A_Impl_1

IB

Contribution

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 12

Current State of SLAM algorithms

§  Almost no reuse of SLAM code (Re-Implementation for varying requirements)

§  Almost no reuse in adaptivity-handling code (Re-Implementation for each solution)

§  Variability handling within business logic

Desired State

§  SLAM-Framework with all alternative implementation variants

§  Automatic generation of adaptivity-handling code

§  External feedback loop to resolve scattering and tangling

§  Change of objective function changes energy consumption, performance, and precision

Contribution

§  MQuAT for SLAM process (SLAM modularization, Code generation, ILP generation, Feedback Loop)

§  Optimizer follows changes of objective function

§  Case study to show feasability

SLAM Process Model

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 13

Motion Model

Sensor Input

Data Analysis Position
Correction

Map
Update Sensor Input

Sample Predict Correct

KLD MonteCarlo RandomRate LowVariance

Abstract Process

Variant with
Particle Filtering

Alternative algorithms
for prediction

MQuAT Modeling of the SLAM Process

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 14

Motion Model

Sensor Input

Data Analysis Position
Correction

Map
Update Sensor Input

ComponentType
Sample

ComponentType
Predict

ComponentType
Correct

Component
KLD

Component
MonteCarlo

Component
RandomRate

Component
LowVariance

Abstract Process

Variant with
Particle Filtering

Alternative algorithms
for prediction

MQuAT Modeling of the SLAM Process

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 15

Motion Model

Sensor Input

Data Analysis Position
Correction

Map
Update Sensor Input

ComponentType
Sample

ComponentType
Predict

ComponentType
Correct

Component
KLD

Component
MonteCarlo

Component
RandomRate

Component
LowVariance

Abstract Process

Variant with
Particle Filtering

Alternative algorithms
for prediction

Component
KLD100

Component
KLD500

Component
KLD700

Variants by parameterization
(e.g., number of particles)

SLAM as a Service

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 16

§  Battery is a very limited resource in mobile robotic systems

§  Predicition of particles is a computation intensive task

à Prediction consumes much energy

§  Outsourcing of the prediction logic

§  Hosting the prediction calculation on a server as a service

Prediction

SLAM as a Service

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 17

Position
Correction

ComponentType
Sample

ComponentType
Predict

ComponentType
Correct

Component
KLD

Component
KLD100

Component
KLD500

Component
KLD700

Robot Server

Model-driven Multi-Quality Auto-Tuning of Robotic Applications

EVALUATION
SLAM PARTICLE PREDICTION AS A
SERVICE

Model-driven Multi-Quality Auto-Tuning of Robotic Applications

18

Hardware setup

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 19

[worker]
Cubieboard

[worker]
Cubieboard

[worker]
Cubieboard

[worker]
Cubieboard

[master]
Cubieboard Cambrionix

Power Supply

Energy Management

Robotic
Application

Probability
Prediction

MAPE-K R
obot

Monitoring and Reconfiguration

S
erver

MAPE-K

Monitoring and Reconfiguration

Power Supply

Cubieboard

Cambrionix USB Power Supply

Dashboard
(objectives)

C
lient

SLAM as a Service
with Parallelization

§  Robot driving from the start to the target position

§  Simbad simulation environment

§  GeneralRobot target framework

§  MQuAT SLAM optimizer
§  Prediction is done for each particle in isolation

à Can calculated in parallel

§  1-5 boards with 2 cores, max. 10 parallel

threads
§  Kullback-Leibler Divergence with n*100

particles

§  For each variant, measure:

§  PC: Server power consumption in ms

§  T: Response time of the service in Watt

§  D: Deviation between real and estimated

position as length of the vector (Δx; Δy; ΔΦ)
x,y = Position, Φ = rotation

Start

Target

ComponentType
Predict

Component
KLD

Component
KLD100

Component
KLD500

Component
KLD700

Server

Component
1xKLD100

Component
KLD100

Component
5xKLD100 …

Result

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 21

Result

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 22

particles 100 500 700 100 500 700 100 300 700

T (ms) 208.6 532.2 772.7 290.2 457.2 557.4 275.3 361.6 456.2

PC (W) 1.6 1.8 1.8 4.4 4.6 4.8 7.1 7.3 7.7

D 338.4 318.7 261.9 365.9 134.6 67.6 371.3 30.6 22.4

1 cubie 3 cubies 7 cubies

Result

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 23

particles 100 500 700 100 500 700 100 300 700

T (ms) 208.6 532.2 772.7 290.2 457.2 557.4 275.3 361.6 456.2

PC (W) 1.6 1.8 1.8 4.4 4.6 4.8 7.1 7.3 7.7

D 338.4 318.7 261.9 365.9 134.6 67.6 371.3 30.6 22.4

§  Response time depends on both parameters

à More boards = lower response time

à More particles = higher response time

1 cubie 3 cubies 7 cubies

Result

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 24

particles 100 500 700 100 500 700 100 300 700

T (ms) 208.6 532.2 772.7 290.2 457.2 557.4 275.3 361.6 456.2

PC (W) 1.6 1.8 1.8 4.4 4.6 4.8 7.1 7.3 7.7

D 338.4 318.7 261.9 365.9 134.6 67.6 371.3 30.6 22.4

§  Power consumption mainly depends on number of boards

à More boards = higher power consumption

à More particles = slightly higher power consumption

1 cubie 3 cubies 7 cubies

Result

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 25

particles 100 500 700 100 500 700 100 300 700

T (ms) 208.6 532.2 772.7 290.2 457.2 557.4 275.3 361.6 456.2

PC (W) 1.6 1.8 1.8 4.4 4.6 4.8 7.1 7.3 7.7

D 338.4 318.7 261.9 365.9 134.6 67.6 371.3 30.6 22.4

§  Deviation depends on both parameters

à More boards = lower deviation

à More particles = lower deviation

1 cubie 3 cubies 7 cubies

Result

Model-driven Multi-Quality Auto-Tuning of Robotic Applications
26

particles 100 500 700 100 500 700 100 300 700

T (ms) 208.6 532.2 772.7 290.2 457.2 557.4 275.3 361.6 456.2

PC (W) 1.6 1.8 1.8 4.4 4.6 4.8 7.1 7.3 7.7

D 338.4 318.7 261.9 365.9 134.6 67.6 371.3 30.6 22.4

§  Real trade-off between response time, power consumption and deviation

§  Lower response time leads to high deviation

§  Lower power consumption leads to high deviation

§  Lower deviation leads to:

 higher power consumption (with low response time)

 higher response time (with low power consumption)

1 cubie 3 cubies 7 cubies

Objective
function of ILP
important

MQuAT Optimizer Follows Change of Objective Function of ILP

Model-driven Multi-Quality Auto-Tuning of Robotic Applications 27

[worker]
Cubieboard

[worker]
Cubieboard

[worker]
Cubieboard

[worker]
Cubieboard

[master]
Cubieboard Cambrionix

Power Supply

Energy Management

Robotic
Application

Probability
Prediction

MAPE-K R
obot

Monitoring and Reconfiguration

S
erver

MAPE-K

Monitoring and Reconfiguration

Power Supply

Cubieboard

Cambrionix USB Power Supply

Dashboard
(objectives)

C
lient

§  Real trade-off between response time, power consumption and deviation

§  Lower response time leads to high deviation

§  Lower power consumption leads to high deviation

§  Lower deviation leads to:

 higher power consumption (with low response time)

 higher response time (with low power consumption)

§  MQuAT Optimizer dynamically adapts SLAM by following the

changes of Objective Functions

Model-driven Multi-Quality Auto-Tuning of Robotic Applications

CONCLUSION AND FUTURE WORK
Model-driven Multi-Quality Auto-Tuning of Robotic Applications

28

Model-driven Multi-Quality Auto-Tuning of Robotic Applications

Conclusion

29

-  SLAM has a high degree of variation based on varying requirements (also @run.time)

-  State: Poor reuse of SLAM-code and adaptation logic

-  Assumption: Component Modeling + Code Generation decreases development time and increases

maintainability

-  MQuAT for runtime optimization of architectures with Quality Contracts

-  Applicable for SLAM processes

-  Benchmarks show that trade-offs exist (only for one small step within a complex process)

-  Energy-consumption can be decreased, when lower response time or lower quality is accapable

-  MQuAT optimizer follows changes of objectives

Model-driven Multi-Quality Auto-Tuning of Robotic Applications

Future Work

30

-  Include benchmarks of the other variants of the prediction algorithm

-  Model and migrate existing implementations for whole SLAM process

-  Develop SLAM-Toolbox for static and dynamic variant generation

-  Integration in standard-platforms (e.g., ROS)

Fakultät Informatik | Institut für Software- und Multimediatechnik | Lehrstuhl für Softwaretechnologie

Model-driven Multi-Quality Auto-Tuning of
Robotic Applications
MORSE 2015

Christian Piechnick, Sebastian Götz,
René Schöne and Uwe Aßmann

Technische Universität Dresden
Software Engineering Group

Frank Bahrmann and
Hans-Joachim Böhme

HTW Dresden

Artificial Intelligence Group

